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Abstract

In order to deploy a  tightly-coupled multiprocessor (TCMP)
in the commercial world, the TCMP must be fault tolerant.
Researchers have designed various checkpointing algorithms to
implement fault tolerance in a TCMP. To date, these algorithms
fall into 2 principal classes, where processors can be checkpoint
dependent on each other. We introduce a new apparatus and
algorithm that represents a 3rd class of checkpointing scheme.
Our algorithm is distributed recoverable shared memory with
logs (DRSM-L) and is the first of its kind for TCMPs. DRSM-L
has the desirable property that a processor can establish a
checkpoint or roll back to the last checkpoint in a manner that is
independent of any other processor. In this paper, we describe
DRSM-L and present results indicating its performance.

I. Introduction

A tightly-coupled multiprocessor (TCMP) is a multiprocessor
where specialized hardware maintains the image of a single
shared memory. In order to deploy a TCMP in the commercial
world, the TCMP must be fault tolerant. The dominant method
of fault tolerance is roll-back recovery and has 2 principal
aspects. First, a processor establishes an occasional checkpoint, a
consistent state of the system. Second, if a processor encounters
a fault, the processor rolls back to the last checkpoint and
commences execution from the state saved in that checkpoint.
The first aspect, the establishment of checkpoints, is the more
important one as it is a cost that the TCMP regularly experiences
even if no fault arises. The second aspect, the actual rolling-
back, is less important as faults tend to occur infrequently.
Hence, much of the research in roll-back recovery for TCMPs
has focused on developing efficient algorithms for establishing
checkpoints. This paper presents the first apparatus and
algorithm enabling a processor to perform roll-back or
checkpoint establishment in a way that is independent of any
other processor in a TCMP. Our algorithm is called distributed
recoverable shared memory with logs (DRSM-L).

II. Background

Throughout our discussion, we assume that a memory block
and the highest-level-cache line are identical in size and that the
TCMP uses a write-back cache policy. To minimize the cost of
the system, we assume that it can hold only 1 level of checkpoint.

Under these assumptions for a TCMP, a dependency can arise
when 2 processors, “P” and “Q”, access the same memory block.
Two types of processor interaction cause dependencies to arise.

1. write-read: A write by “P” precedes a read by “Q”.
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roll-back dependency: P -> Q checkpoint dependency: Q -> P
2. write—write: A write by “P” precedes a write by “Q”.
roll-back dependency: P <->Q  checkpoint dependency: P <-> Q

For a write-read interaction, if “P” rolls back to the last
checkpoint, then “Q” must also roll back to the last checkpoint.
If “Q” establishes a checkpoint, then “P” must also establish a
checkpoint. For a write-write interaction, if one processor rolls
back to the last checkpoint or establishes a new checkpoint, then
the other processor must roll back to its last checkpoint or
establish a new checkpoint, respectively [13].

The current schemes for establishing checkpointsin ~ TCMPs
fall into 2 major categories: tightly synchronized method (TSM)
and loosely synchronized method (LSM) [13]. Wu proposes a
TSM-type algorithm [16]. If a checkpoint dependency arises
between any 2 processors, the processor supplying the dirty data
must immediately establish a checkpoint. Both Ahmed [2] and
Hunt [6] have done work related to research by Wu.

An example of a LSM-type algorithm is one presented by
Banatre [3]. If a checkpoint dependency arises, the TCMP
simply records the dependency without requiring the immediate
establishment of a checkpoint. At some time in the future, if a
processor establishes a checkpoint, that processor must query the
records of dependencies to determine all other processors that
must establish a checkpoint as well. Hence, a LSM-type
algorithm is more flexible than a TSM-type algorithm in terms of
when checkpoints must be established.

There exists a 3rd category of checkpointing algorithms:
unsynchronized method (USM) [13]. In a USM-type algorithm,
a processor can establish a checkpoint (or roll back to the last
checkpoint) without regard to any other processor. Some USM-
type algorithms [10][14] exist for a loosely-coupled
multiprocessor like a network of workstations, but until now,
such algorithms did not exist for TCMPs. In this paper, we
present DRSM-L, the first USM-type algorithm for a TCMP.

III. Assumptions

The TCMP into which we shall incorporate DRSM-L is a
multi-node multiprocessor like that shown in Figure 2. Each
node has a processor module and a memory module. The nodes
are connected by a high-speed dedicated network. We assume
the following.

1. The processor module is not fault tolerant but is fail-safe. We can use
double-modular redundancy to quickly detect whether the output of a
processor module is faulty before the output is emitted from the
processor module.

2. The TCMP suffers at most a single point of failure.

3. The network and each memory module is fault tolerant.



4. The virtual machine monitor (VMM) is fault-tolerance aware.
Specifically, if communication occurs between a processor and the
environment outside of the TCMP, then the VMM will invoke the
processor to establish a checkpoint.

The first 3 assumptions are commonly found in research papers
proposing checkpointing algorithms for a TCMP. Under the 4th
assumption, the TCMP views the OS as simply another user
application running on top of the VMM [4]. It enables us to run
any non-fault-tolerant OS while the entire TCMP remains fault-
tolerant.

IV. DRSM-L
A. Apparatus
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Figure 1. DRSM-L

DRSM-L is an apparatus and algorithm that enables the
TCMP to recover from a failure of the processor module. Figure
1 illustrates the apparatus of DRSM-L. Each line of the 2nd-level
cache has the traditional fields: tag, status (SHARED,
EXCLUSIVE, and INVALID) of line, and line of data. Each line
has 3 additional fields: counter, instruction/data flag (IDF), and
2-bit status flag (SF). The SF assumes any 1 of 4 values: “N”
(no event), “R” (remote read), “E” (ejection), “V” (counter
overflow). The cache also has 2 index registers that mirror 2
index registers in the local memory module.

The local memory module has the traditional directory
controller and bank of memory. The module also has a line
buffer and a counter buffer. Each buffer has an index register
(“index_LB” or “index_CB”) pointing at the next free entry.
There is also a checkpoint-state buffer (CSB).

In the following discussion, we assume that the TCMP (1)
prohibits self-modifying code and (2) requires instructions and
regular data to reside in separate memory blocks (i. e. cache
lines). If a cache line contains instructions, then the IDF is 0; if
the line contains data, then the IDF is 1. DRSM-L uses only
regular data to build an audit trail.

B. Algorithm

The general operation of DRSM-L is the following. The
directory controller stores each incoming memory block (of
regular data) destined for the 2nd-level cache into the next entry
(at which the “index_LB” points) in the line buffer and,
concurrently, forwards the memory block to the cache. Each
data-access hitting on a 2nd-level-cache line causes its counter to
increment; the counter records the number of accesses between
consecutive events. When a cache-coherence event like (1) a
write-back due to a dirty read by a remote processor or (2) an
ejection (i. e. eviction/invalidation) occurs on a 2nd-level-cache
line, the cache sends a reply to the local directory controller and,
concurrently, forwards the counter to it in the reply. The
directory controller installs the counter into the counter buffer.
Saving (1) the incoming memory block into the line buffer and
(2) the counter into the counter buffer incurs no additional delay
since these events occur in parallel with the usual activities of (1)
forwarding the memory block from the directory controller to the
2nd-level cache and (2) maintaining cache coherence,
respectively. The contents of the line buffer and the counter
buffer constitute an audit trail of incoming memory blocks and
cache-coherence events that occurred since the last checkpoint.

A recovery logic circuit (RLC) in each memory module
periodically sends “Are you alive?” messages to the processor. If
it does not respond within a timeout period, then the RLC
concludes that a fault has occurred. The RLC resets the local
processor if the fault is transient or the processor in the spare
processor module if the fault is permanent. Then, the processor
performs recovery by resuming execution from the state saved in
the last checkpoint. On each 2nd-level-cache miss, the VMM
installs the next matching memory block from the line buffer into
the appropriate cache line and also installs the next matching
counter and SF from the counter buffer into that same cache line.
Each data-access hitting on a 2nd-level-cache line causes its
counter to decrement; once it underflows, the VMM simulates the
cache-coherence event indicated by the SF.

Finally, a processor establishes a checkpoint when (1) the line
buffer overflows, (3) the counter buffer overflows, (3) a timer
expires, or (4) communication occurs between a processor and
the environment outside of the TCMP. Establishing a checkpoint
empties the 2 buffers.

Below, we use C-like code to precisely describe how the
DRSM-L (1) fills the line buffer and counter buffer in the normal
mode of execution, (2) rolls the processor back to the last
checkpoint after encountering a fault, (3) uses the audit trail to
satisfy data-access misses and to simulate cache-coherence
events, and (4) establishes a checkpoint. In our code, we refer to
the 2nd-level cache as simply “cache”. Due to limitations on
space, we present only the key aspects of the full algorithmic
description in [13].

explanatory notes

States of cache line are INVALID, SHARED, and EXCLUSIVE.
Number of entries in line buffer is 8192.

Number of entries in counter buffer is 8192.

Extended tag is tag appended with index of specific cache line into which
memory block is installed.

Width of counter is 32 bits.

execution mode: normal
switch (event) { /* eventsin cache */




data_write_has_upgrade_miss_in_cache _data_line: { ; }

data_access_misses_in_cache_data_line: {
if (index LB_ == 0x2000) establish_checkpoint(); }
data_access_hits_in_cache_data_line: {
if (cache_line.counter == OXOFFFFFFFF) {
if (index CB_ == 0x2000) {
establish _checkpoint(); }
else {
index CB_++;

log_counter into_counter buffer(cache line, "V"); } }

else {
cache_line.counter++; } }
evict_cache_line:
invalidate_cache_line: {
if (index CB_ == 0x2000) {
establish_checkpoint(); }
else {
index CB_++;
log_counter into_counter buffer(cache line, "E"); }
remotely_read local_dirty cache_line: {
if (index CB_ == 0x2000) {
establish_checkpoint(); }
else {
index CB_++;
log_counter into_counter buffer(cache line, "R"); }
timer_expires:
communication_between_cpu_and_environment
outside_ TCMP_occurs: {
establish_checkpoint(); }
default: {
do nothing special; } }

switch (event) { /* events in directory controller */
memory_block_arrives: {
if (original access is data access) {
log_memory block into_line buffer();
install_ memory block into_cache data line(); }
else {

install_memory_block into_cache instruction line(); } }

default: { do nothing special; } }

log_memory_block_into_line_buffer() {
line_buffer[index LB].extended tag <=
extended tag(memory block);

line_buffer[index LB].line of data <= data(memory block);

index_ LB++; }
log_counter_into_counter_buffer(cache line, event) {

counter_buffer[index CB].extended tag <=

extended_tag(cache line);

counter_buffer[index CB].counter <= cache_line.counter;

counter_buffer[index CB].SF <= event;

index CB++; }
install_memory_block_into_cache_instruction_line() {

cache line.IDF <=0; cache line.counter <= 0;

set tag, status_of line, and line_of data of cache_line;}
install_memory_block_into_cache_data_line() {

index LB ++; cache line.IDF <=1; cache line.counter <= 0;

set tag, status_of line, and line_of data of cache_line;}

fault detection and roll-back
if (RLC detects fault in processor module) {
if (fault == permanent) {
replace processor module with spare module;
reset spare processor module, invalidating all entries
in both Ist-level cache and 2nd-level cache; }
else {
reset processor module, invalidating all entries
in both Ist-level cache and 2nd-level cache; }
trap to virtual machine monitor;

query all memory modules to find lost cache-coherence messages;
negatively acknowledge all cache-coherence messages
until recovery is complete;
if (CSB.CF == PERMANENT_CHECKPOINT _IS_ACTIVE) {
complete permanent checkpoint();
i <= CSB.toggle flag;
if (CSB.checkpoint_area[i].status !=
PERMANENT CHECKPOINT_AREA) {
i=1-CSB.toggle flag; }
load internal state of processor
from CSB.checkpoint_area[i].processor_state;
for (each cache line in cache) {
load cache_line from CSB.checkpoint area[i].cache;
cache line.counter <=0; }
return from trap to virtual machine monitor;
exit and resume normal execution; }
if (CSB.CF == TENTATIVE_CHECKPOINT_IS_ACTIVE) {
i<=1-CSB.toggle flag; CSB.checkpoint area[i].status <= NULL;
CSB.CF <= CHECKPOINT_IS NOT_ACTIVE;
discard tentative checkpoint; }
read all valid entries from line buffer;
group all entries according to cache index but, for each
cache index, maintain the temporal order in which the
entries were originally inserted into the line buffer;
place grouped entries into sorted line buffer;
read all valid entries from counter buffer;
group all entries according to cache index but, for each
cache index, maintain the temporal order in which the
entries were originally inserted into the counter buffer;
place grouped entries into sorted counter buffer;
i <= CSB.toggle flag;
if (CSB.checkpoint_area[i].status !=
PERMANENT CHECKPOINT_AREA) {
i=1-CSB.toggle flag; }
load internal state of processor
from CSB.checkpoint_area[i].processor_state;
for (each cache line in cache) {
load cache_line from CSB.checkpoint area[i].cache;
cache_line.counter <=0; cache line.SF <="V"; }
return from trap to virtual machine monitor;
enter recovery mode of execution; }

execution mode: recovery
switch (event) { /* eventsin cache */
data_write_has_upgrade_miss_in_cache_data_line: {
cache line.status of line <= EXCLUSIVE; }
data_access_misses_in_cache_data_line: {
trap to virtual machine monitor;
cache line <= available cache line();
get entry from_sorted line buffer(cache line)
get entry from_sorted counter buffer(cache line);
return from trap to virtual machine monitor;
exit _recovery upon_completion(); }
data_access_hits_in_cache_data_line: {
switch (cache line.SF) {
"N": { cache line.counter <=0; }
"E": {
if (cache_line.counter !=0) {
cache line.counter--; }
else {
trap to virtual machine monitor;
cache line.status_of line <= INVALID;
get entry from_sorted line buffer(cache line);
get entry from_sorted counter buffer(cache line);
return from trap to virtual machine monitor; } }
"R": {
if (cache_line.counter != 0) {
cache line.counter--; }
else {




trap to virtual machine monitor;
cache line.status_of line <= SHARED;
get entry from_sorted counter buffer(cache line);
return from trap to virtual machine monitor; } }
"V {

if (cache_line.counter != 0) {
cache line.counter--; }

else {
trap to virtual machine monitor;
get entry from_sorted counter buffer(cache line);
return from trap to virtual machine monitor; } } }

exit_recovery upon_completion(); }
default: { exit recovery upon_completion(); } }

switch (event) { /* events in directory controller */
memory_block_arrives: {
if (original access is data access) { ; }
else {
install memory block into cache instruction line(); } }
default: {
do nothing special; } }

get_entry_from_sorted_line_buffer(cache line) {
get next matching entry from sorted_line buffer;
cache line.tag <= tag(sorted_line buffer[entry].extended tag);
if (data-access == write) {
cache line.status_of line <= EXCLUSIVE; }
else {
cache line.status_of line <= SHARED; }
cache line.line of data <=
sorted line buffer[entry].line of data; }
get_entry_from_sorted_counter_buffer(cache line) {
get next matching entry from sorted counter_buffer;
if (no matching counter) {
cache_line.counter <= 0;
cache line.IDF <= 1; cache line.SF <="N"; }
else {
cache line.counter <= sorted_counter buffer[entry].counter;
cache line.IDF <= 1;
cache line.SF <= sorted counter buffer[entry].SF; } }
exit_recovery_upon_completion() {
if ((sorted_counter_buffer has no entry where SF is “E”
or “R”) && (counters in all valid cache data lines
where SF is “E” or “R” are 0)) {
for (each valid cache_line in cache) {
switch (cache line.SF) {
"E": { cache line.status_of line <= INVALID; }
"R": { cache line.status_of line <= SHARED; }
default: { ; } } }
establish_checkpoint();
write_back and invalidate cache_lines();
exit recovery and resume normal execution; }
else{ ; } }

checkpoint establishment
establish_checkpoint() {
CSB.CF <= TENTATIVE_CHECKPOINT _IS_ACTIVE;
wait until all pending memory accesses are completed
or negatively acknowledged;
negatively acknowledge all cache-coherence messages
until checkpoint is established;
establish_tentative checkpoint();
CSB.CF <= PERMANENT CHECKPOINT _IS_ACTIVE;
establish_permanent checkpoint();
CSB.CF <= CHECKPOINT_IS NOT_ACTIVE; }
establish_tentative_checkpoint() {
i<=1-CSB.toggle flag;
save tag, status_of line, line of data, and IDF of all
cache lines into CSB.checkpoint area[i].cache;

save internal state of processor
into CSB.checkpoint area[i].processor_state;
CSB.checkpoint_areal[i].status <=
TENTATIVE_CHECKPOINT AREA; }
establish_permanent_checkpoint() {
index LB <=0; index CB_<=0;
index LB <=0; index CB <=0;
for (each cache line in cache) { cache line.counter <=0; }
i <= CSB.toggle flag;
CSB.checkpoint_area[i].status <= NULL;
i<=1-CSB.toggle flag;
CSB.checkpoint_areal[i].status <=
PERMANENT _CHECKPOINT_AREA;
CSB.toggle flag<=1i; }

V. Hardware and Software Issues

For a given amount of silicon area from which we can build
the line buffer and counter buffer, the optimal size of each is one
that minimizes the number of checkpoints. The optimal size of
each buffer is one where

optimum ratio = E[CB] / E[LB] = R[CB] / R[LB]. (equation #1)

“E[CB] “ and “E[LB]” are the number of entries in the counter
buffer and the line buffer, respectively. “R[CB]” and “R[LB]”
are the rates at which the counter buffer and the line buffer,
respectively, fill [13].

On the software side, the description of the above algorithm
applies to a single thread of a single process running on a
processor in a TCMP. In order to deal with multiple threads and
processes, the DRSM-L must direct a processor, “P”, to establish
a checkpoint just after “P” switches context (and before “P”
sends any dirty data to the rest of the TCMP).

Establishing a checkpoint at each context switch will not
cause appreciable deterioration in performance. Establishing a
checkpoint involves mainly saving the 2nd-level-cache and
processor state into the CSB and, hence, costs about 41
microseconds for a 8192-line cache of a 200 megahertz
processor. The fastest context-switch time (of a thread) is
approximately 8 microseconds, scaled for a 200 megahertz
SPARC processor from the results by Narlikar [9]. The
checkpoint time and the context-switch time have roughly the
same order of magnitude.

VI. Simulation Methodology

A. Multiprocessor Simulator

We evaluated DRSM-L by simulating its operation within a
multiprocessor simulator. Figure 2 illustrates its base TCMP.
The model of the memory system and the network is the NUMA
model packaged with the SimOS simulator [5]. Instead of
SimOS, we use ABSS to simulate the processors and to drive the
NUMA model [11]. The delays through the components in
figure 2 have values that are typical for a processor running at
200 megahertz and are listed in [13]. Below are the other
parameters.
base parameters
processor = SPARC V7 @ 200 megahertz
cache policy = write-back
memory model = sequential consistency
1st-level instruction cache = 32 kilobytes with 4-way set

associativity, 2 states (INVALID, SHARED), 64-byte line



1st-level data cache = 32 kilobytes with 4-way set associativity, 3
states (INVALID, SHARED, EXCLUSIVE), 64-byte line

2nd-level cache = | megabyte with 4-way set associativity, 3 states
(INVALID, SHARED, EXCLUSIVE), 128-byte line

DRSM-L parameters

width of counter = 32 bits

line buffer = 8192 entries

counter buffer = 8192 entries

timer = expiration per 20 million cycles
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Figure 2. Base TCMP

B. Benchmarks

We run 6 benchmarks -- Cholesky, FFT, LU, ocean, radix, and
water -- from the SPLASH2 suite [15] . Cholesky factors a
sparse matrix. FFT performs a fast Fourier transform. LU
factors a dense matrix. Ocean simulates eddy and boundary
currents in oceans. Radix performs a radix sort. Finally, water
evaluates the forces and potentials as they change over time
among water molecules.

These benchmarks have 2 common characteristics. First, the
working set of each benchmark fits within our large 2nd-level
cache. Second, these benchmarks represent a scientific
workload. They are useful in representing a wide variety of
memory-access patterns but do virtually no communication with
the environment outside of the TCMP. So, a checkpoint
triggered by communication between a processor and the
environment outside of the TCMP does not occur. We note that
regardless of the event triggering a checkpoint, the procedure for
establishing one remains the same, so we can still evaluate the
performance of our algorithms even if checkpoints are triggered
by a smaller set of events.

C. LSM-type Apparatus and Algorithm

In order to compare the performance of DRSM-L (as a USM-
type algorithm) against a LSM-type algorithm, we introduce
DRSM. It is a recently developed LSM-type algorithm and is an
extension of recoverable shared memory (RSM) developed by
Banatre[3]. Figure 3 illustrates only the key structures of DRSM
for a 3-processor configuration.

We very briefly describe how DRSM works. Bank #1 of
memory holds the working data (and tentative checkpoint), and
bank #2 holds the permanent checkpoint. The dependency matrix

records checkpoint dependencies that can arise when 2 processors
access the same memory block in the memory module. If a
processor, “P”, wishes to establish a checkpoint, the DRSM
recursively queries all the dependency matrices and identifies all
processors that are dependent on “P”. Then, “P” and all its
dependent processors establish a checkpoint. A processor
establishes a checkpoint by saving the processor state into the
local memory module and by writing all dirty 2nd-level-cache
lines back into main memory (i. e. bank #1).
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Figure 3. DRSM

The establishment of a checkpoint is triggered by only 2
events: (1) expiration of a timer and (2) communication between
a processor and the environment outside of the TCMP.

The DRSM described here differs from the DRSM in prior
work [13] in regards to only 1 aspect. In the current DRSM,
bank #2 always holds the permanent checkpoint, but in the prior
DRSM, bank #2 alternates between holding permanent-
checkpoint data and holding working data. The extra
functionality in the prior DRSM proved unnecessary, so we
removed the functionality and simplified the hardware.

VII. Results and Analysis

A. Overall Performance of Benchmarks

Due to space limitations, we focus on 2 representative
benchmarks: Cholesky and ocean. (The full set of results
appears in [13].) Figure 5 shows their performance on the base
TCMP, the TCMP with DRSM, and the TCMP with DRSM-L.
We set the number of processors to 8, 16, and 32. We
decompose the execution time into 5 categories: non-idle time of
the processor, the instruction stall, the lock stall, the data stall,
and the barrier stall. In general, the performance of DRSM-L
exceeds the performance of DRSM.

For ocean, the barrier stall and the lock stall increase
substantially as the number of processors increases from 8 to 32
processors because ocean, unlike Cholesky, has (1) several locks
within global barriers and (2) global locks. All processors
compete for these locks, causing hot spots to arise.

B. Checkpoints and Checkpoint Data
Table 2 shows statistics about the rate at which DRSM-L

establishes checkpoints. Each application has 4 rows of statistics.
The 1st row indicates the total number of checkpoints established



per processor. Checkpoints in DRSM-L are triggered by
effectively 3 events: (1) timer expiration, (2) line-buffer
overflow, and (3) counter-buffer overflow. The checkpoints
attributed to each trigger appear in the 2nd row of statistics. For
example, the 2nd row for Cholesky running on an 8-processor
TCMP has “(9.62 + 0.12 + 0.62)”. The number of checkpoints
due to timer expiration, line-buffer overflow, and counter-buffer
overflow are 9.62, 0.12, and 0.62, respectively.

The remaining 2 rows show the time consumed by checkpoint
establishment. The 3rd row shows the number of cycles for
which a processor is stalled in establishing the number of
checkpoints in the 2nd row. Each number within parentheses in
the 3rd row indicates a fraction of 10,000 cycles. The 4th row
shows the percentage (of the total execution time of the
benchmark) represented by the number of cycles in the 3rd row.
For example, during the execution of the Cholesky benchmark by
the 8-processor TCMP, a processor consumed 81,890 cycles in
establishing 9.62 timer-triggered checkpoints. The 81,890 cycles
is 0.03977 % of the total number of cycles needed to execute
Cholesky.

The data for DRSM-L indicates that the 8192-entry line buffer
and the 8192-entry counter buffer are adequately large. They
overflow infrequently and, hence, trigger the establishment of
checkpoints only infrequently. Based on the number of bits of
storage, the size of the combination of the line buffer and the
counter buffer is close to the size of the 2nd-level cache.

Table 3  shows statistics about the rate at which DRSM
establishes checkpoints. The checkpoints in table 2 are triggered
by the expiration of the timer.

Table 4 shows statistics about the amount of data written into
the line buffer and counter buffer. Each row has 3 consecutive
numbers enclosed within parentheses. The 1st number is the
number of entries written into the line buffer. The 2nd number is
the number of entries written into the counter buffer. The 3rd
number is the ratio of the 2nd number to the 1st number. This
ratio is the optimum ratio, according to equation #1.

For DRSM-L with 8, 16, and 32 processors, the ratios
represented by the 3rd numbers are concentrated in the range of
[0.62, 0.94], [0.69, 0.89], and [0.61, 0.89], respectively,
excluding 3 atypical extrema (i.e. 0.42,0.41, and 0.41). That the
ratios are concentrated in a somewhat narrow band over several
different applications is opportune. We can then select the
average ratio (according to a geometric average) to determine the
relative sizes of the line buffer and counter buffer, and this
average ratio shall yield good system performance across all the
benchmarks. The geometric averages of the ratios within the
bands of [0.62, 0.94], [0.69, 0.89], and [0.61, 0.89] are 0.79, 0.80,
and 0.79, respectively. Our selected ratio of 1.0 -- ratio of 8192
entries in the counter buffer to 8192 entries in the line buffer -- is
slightly larger than these 3 geometric averages.

C. Performance Impact of Checkpoints

When a processor establishes checkpoints, 2 types of
interference can degrade its performance in both DRSM and
DRSM-L. First, the processor wastes time in actually
establishing a checkpoint. Second, establishing a checkpoint
causes certain resources to be unavailable; a processor attempting
to access them receives a negative acknowledgment. For
example, when a processor, "P", establishes a checkpoint, "P"
negatively acknowledges cache-coherence messages (like
invalidations) indirectly sent from other processors.

A processor in DRSM also suffers a 3rd type of interference.
During the establishment of a checkpoint, "P" converts much
dirty data (in state EXCLUSIVE) in the 2nd-level cache into
clean data (in state SHARED) by writing it back into main
memory. After "P" resumes execution after establishing the
checkpoint, "P" wastes time in submitting many upgrade requests
to memory in order to convert clean data (which was dirty prior
to the checkpoint) back into dirty data so that "P" can resume
writing into it.

Table 5 shows the negative acknowledgments (  NAKSs) and
upgrade misses generated by the base TCMP, the TCMP with
DRSM, and the TCMP with DRSM-L. For each of the
benchmarks, the 1st row shows the number of NAKs; the impact
of the 2nd type of interference is the increase in NAKs over that
of the base TCMP. The 2nd row shows the number of upgrade
misses; the impact of the 3rd type of interference is the increase
in upgrade misses over that of the base TCMP. (A processor in
DRSM-L does not suffer the 3rd type of interference.) For
DRSM, the large increase in the number of upgrade misses is a
major reason that DRSM performs worse than DRSM-L.

D. DRSM Versus DRSM-L

=

Figure 4. Effect of Irregular Checkpointing

DRSM-L has an inherent advantage over DRSM. DRSM-L
enables a processor, "P", to establish a checkpoint without regard
to any other processor. By contrast, in a system with DRSM, if
"P" establishes a checkpoint, then all processors that are
checkpoint dependent on "P" must also establish a checkpoint.
Suppose that "P" tends to establish checkpoints at a much higher
rate than the other processors. If the TCMP uses DRSM, then
checkpoint dependencies between "P" and the other processors
tend to cause the other processors to establish checkpoints at a
high rate, degrading the performance of the TCMP. On the other
hand, if the TCMP uses DRSM-L, the high rate of checkpoints by
"P" does not cause the other processors to establish checkpoints
at a high rate. Hence, DRSM-L has an inherent performance
advantage over DRSM.

To quantitatively demonstrate this performance advantage, we
increase the rate at which processor #3 in our TCMP establishes
checkpoints. We set the timer of processor #3 to expire after




each interval of 2 million cycles, but we keep the current timer
interval of 20 million cycles for the other processors. In other
words, we increase, by a factor of 10, the rate at which processor
#3 tends to establish timer-triggered checkpoints.

DRSM DRSM-L
8 CPUs (120; 92.9) (103; 9.6) checkpoints
16 CPUs (80; 68.8) (68; 6.9) checkpoints
32 CPUs (58; 50.4) (51; 5.1) checkpoints

Table 1. Timer-triggered Checkpoints: (number for
processor #3; average for other processors)

We focus on Cholesky. Figure 4 shows the overall results.
(For DRSM, expiration of a timer is effectively the only event
that triggers establishing a checkpoint.) In figure 5, DRSM-L
runs about 9.09%, 6.13%, or 4.77% faster than DRSM for a
TCMP with 8, 16, or 32 processors, respectively. In figure 4,
DRSM-L runs about 26.75%, 25.00%, or 19.28% faster than
DRSM for a TCMP with 8, 16, or 32 processors, respectively.
DRSM performs much worse then DRSM-L in figure 4. To
obtain insight into the extent to which checkpoint dependencies
cause a high rate of checkpointing by one processor to impact
other processors, we introduce a lumped parameter that is the
average number of timer-triggered checkpoints across all
processors except processor #3. Table 1 shows the values for this
new parameter. Each row has 2 sets of numbers. In each set, the
1st number is the number of timer-triggered checkpoints
established by processor #3, and the 2nd number is the average
number of timer-triggered checkpoints across all processors
except processor #3. Clearly, due to the checkpoint dependencies
that are in DRSM, the high rate of establishing checkpoints by
processor #3 causes all the other processors to establish
checkpoints at almost the same high rate. Hence, DRSM
performs much worse than DRSM-L.

VIII. Related Work

Alewine proposes a read buffer that is similar to the line
buffer. The read buffer saves the data read from a register file;
after the processor encounters a fault, the register file restores its
original state from the read buffer [1]. This technique provides
fast roll-back but assumes that the read buffer is not affected by
faults in another part of the processor.

Also, Janssens analyzes the performance of TSM-type and
LSM-type algorithms in an insightful study [8]. It focuses
exclusively on bus-based systems. By contrast, we focus on
TCMPs created from more general networks, using directories to
maintain the coherence of the caches.

The methods of establishing checkpoints in a TCMP are
somewhat similar to methods in a loosely-coupled multiprocessor
(LCMP) like a network of workstations, where software
maintains the image of a single shared memory. An example of a
TSM-type algorithm for a LCMP is another checkpointing
scheme proposed by Wu[l7]. An example of a LSM-type
algorithm is the one proposed by Janakiraman[7]. The logging
schemes proposed by Richard[10] and Suri[14] are examples of
USM-type algorithms.

IX. Conclusion
We conclude that DRSM-L is a good checkpointing apparatus

and algorithm for a TCMP. DRSM-L is the first USM-type
algorithm for a TCMP. Unlike current algorithms, DRSM-L

allows independent establishment of a checkpoint and
independent roll-back from a fault and, hence, is much more
scalable than DRSM. DRSM-L performs much better than
DRSM. Also, DRSM-L is substantially cheaper to implement
than DRSM. For example, DRSM-L requires only a single bank
of memory, but both DRSM and RSM [3] require 2 banks of
memory.
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Figure 5. Performance of 2 Benchmarks

8-processor TCMP l6-processor TCMP 32-processor TCMP
Cholesky 10.38 7.00 5.19 checkpoints
(9.62 + 0.12 + 0.62) (6.94 + 0.00 + 0.06) (5.03 + 0.12 + 0.03) (please see text)

(8.189 + 0.106 + 0.532)  (5.902 + 0.000 + 0.055)  (4.281 + 0.106 + 0.027) x

(3.977 + 0.052 + 0.258) (4.229 + 0.000 + 0.040) (4.109 + 0.102 + 0.026) x 0.01 % of run time

le+4 cycles

ocean 22.38 18.19 37.25 checkpoints
(21.38 + 0.25 + 0.75) (18.19 + 0.00 + 0.00) (37.25 + 0.00 + 0.00) (please see text)

(18.186 + 0.213 + 0.682) (15.474 + 0.000 + 0.000) (31.692 + 0.000 + 0.000) x

(3.903 + 0.046 + 0.146) (4.045 + 0.000 + 0.000) (4.098 + 0.000 + 0.000) x 0.01 % of run time

le+4 cycles

Table 2. Checkpoints for DRSM-L

8-processor TCMP l6-processor TCMP 32-processor TCMP
Cholesky 11.00 8.00 6.00 checkpoints
(7.530) (3.447) (2.039) x le+6 cycles
(3.353) (2.327) (1.868) % of run time
ocean 24.00 20.00 39.00 checkpoints
(31.227) (17.650) (10.910) x let6 cycles
(5.871) (4.117) (1.338) % of run time

Table 3. Checkpoints for DRSM

8-processor TCMP l6-processor TCMP 32-processor TCMP

Cholesky (35559; 28548; 0.80) (24420; 16946; 0.69) (18822; 11469; 0.61)
FFT (8782; 6335; 0.72) (4602; 3155; 0.69) (2680; 1882; 0.70)

LU (10571; 4475; 0.42) (6794; 2813; 0.41) (5293; 2147; 0.41)

ocean (124516; 116525; 0.94) (61962; 54849; 0.89) (39862; 35659; 0.89)
radix (8389; 5223; 0.62) (12267; 10375; 0.85) (10379; 8968; 0.86)
water (4893; 3976; 0.81) (5123; 4326; 0.84) (4508; 3874; 0.86)

Table 4. Audit-Trail Data (entries in line buffer; entries in counter buffer; ratio)

8 processors 16 processors 32 processors
base DRSM DRSM-L base DRSM DRSM-L base DRSM DRSM-L
Cholesky 127 148 148 331 334 340 736 768 665 negative ack.’s
9036 22662 9078 4954 9533 4938 3268 5447 3285 upgrade misses
ocean 6222 6404 6347 15936 16624 16480 50931 51009 50128 negative ack.'’'s
41021 75475 40980 28386 61812 28430 14449 38453 14511 upgrade misses

Table 5. Negative Acknowledgments and Upgrade Misses for DRSM-L




