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Abstract

This dissertation examines the performance di�erence between invalidate-based

and update-based cache coherence protocols for scalable shared-memory multiproces-

sors. The �rst portion of the dissertation reviews cache coherence. First, chapter 1 de-

scribes the cache coherence problem and identi�es the two classes of cache coherence

protocols, invalidate-based and update-based. The chapter also reviews bus-based

protocols and reviews the additional requirements placed on the protocols to extend

them to scalable systems. Next, chapter 2 reviews two latency tolerating techniques,

relaxed memory consistency models and software-controlled data prefetch, and ex-

amines their impact on the cache coherence protocols. Finally, chapter 3 reviews the

details of three invalidate-based protocols de�ned in the literature and de�nes two

new update-based protocols.

The second portion of this dissertation examines the performance di�erences be-

tween invalidate-based and update-based protocols. First, chapter 4 presents the

methodology used to examine the performance of the protocols. This presentation

includes a discussion of the simulation environment, the simulated architecture and

the scienti�c applications. Next, chapter 5 describes and analyzes the performance of

two enhancements to the update-based cache coherence protocols. The �rst enhance-

ment, a �ne-grain or word based synchronization scheme, combines data synchro-

nization with the data. This allows the system to take advantage of the �ne-grain



data updates which result from the update-based protocols. The second enhance-

ment, a write grouping scheme, is necessary to reduce the network tra�c generated

by the update-based protocols. Next, chapter 6 presents and discusses the simulated

results that demonstrate that update-based protocols, with the two enhancements,

can signi�cantly improve the performance of the �ne-grain scienti�c applications ex-

amined compared to invalidate-based protocols. Chapter 7 examines the sensitivity

of the protocols to changes in the architectural parameters and to migratory data.

Finally chapter 8 discusses how the choice of protocols a�ect the correctness, cost

and e�ciency of the cache coherence mechanism.

Overall, this work demonstrates that update-based protocols can be used not only

as a coherence mechanism, but also as a latency reducing and tolerating technique

to improve the performance of a set of �ne-grain scienti�c applications. But as with

other latency reducing techniques, such as data prefetch, the technique must be used

with an understanding of its consequences.
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Chapter 1

Introduction

1.1 Parallel Processors

As the computational requirements for computer applications increase, parallel pro-

cessors are becoming more popular. Parallel processors attempt to improve the execu-

tion time of an application by executing portions of it on separate processors. There

are two basic types of parallel processor systems: distributed-memory multicom-

puters and shared-memory multiprocessors. In distributed-memory multicomputers,

independent computer nodes are connected together through a message-passing net-

work. To communicate, nodes send explicit messages between themselves. In shared-

memory multiprocessors, tightly-coupled processors share a global memory space.

Communications between processors is implicit in accesses to shared variables. This

programming model is preferred by many over the message-passing programming

model of the distributed-memory multicomputers as it more closely resembles the

programming model used for uniprocessor systems [68].

1.2 Shared-Memory Multiprocessors

Shared-memory multiprocessors may be implemented using one of three models: the

uniform memory access (UMA) model, the non-uniform memory access (NUMA)

model, or the cache-only memory (COMA) architecture [40, 47, 25]. Discussion of

1
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the COMA architectures is beyond the scope of this dissertation.

In the UMA model, each processor has an uniform memory access latency for

each word of memory. The processors may be connected to the memory by a shared

bus, crossbar switch or multistage interconnect network, as shown in �gure 1.1. One

disadvantage of the UMA model is that as the size of the system is scaled up, the

memory access latency of all memory increases.

Processor ProcessorProcessor Processor

Memory Memory

Bus, crossbar or multistage interconnect network

Memory Memory

Figure 1.1: Uniform Memory Access (UMA) Model

The NUMA model addresses the scalability issue by physically distributing mem-

ory among the processors, as shown in �gure 1.2. In this case, the latency of a memory

access is dependent on the physical location of memory. The local memory access

latency is constant regardless of the size of the system, but the non-local or remote

memory access latency varies based on the distance from the requesting processor to

the remote memory. Several techniques have been presented to tolerate or reduce this

memory access latency, which may become signi�cant for remote memory accesses.

These include processor caches [64], relaxed memory consistency models [1, 22, 38, 33]

and software-controlled data prefetch [55]. The remainder of this chapter describes

the problem introduced by processor caches in shared-memory multiprocessors, and

chapter 2 describes the relaxed memory consistency models and software-controlled

data prefetch in greater detail.
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Processor Memory

General Interconnect (Non-uniform latency)

Processor Memory

Figure 1.2: Non-Uniform Memory Access (NUMA) Model

1.3 Cache Coherence

A processor cache is a small, fast memory placed near the processor that holds the

most recently accessed data [64]. When the desired data is not found in the cache, a

cache miss occurs and the data is fetched from the memory and placed in the cache.

The addition of these caches to shared-memory multiprocessors introduces a data

consistency problem known as the cache coherence problem1.

The problem is that a given memory line may be present in any of the processor

caches. To execute programs correctly2, the copies of this memory line must remain

consistent. Therefore, when a processor modi�es its cached copy of the line, other

caches that have a copy of the line must be noti�ed so that their copy may be made

consistent.

For example, in �gure 1.3 the shared variable A is being shared by multiple pro-

cessors. When processor 1 modi�es its cached copy of A, the other remote cached

copies must be made consistent and memory's copy may need to be made consistent.

1The terms coherence and consistency tend to be used interchangeably in the literature.
2Some iterative programs may still converge even if memory is not always coherent.
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Cache
A

Memory
A

General Interconnect (Non-uniform latency)

Memory

Processor 1 Processor N

Cache
A

When the processor
modifies its cached
copy of a shared
variable A, all other
copies of A must be
made consistent.

Other cached
copy of shared
variable A

Memory’s copy
of shared variable A

Figure 1.3: Cache Coherence Problem

The two methods for maintaining consistency on a write are invalidating or updat-

ing the remote copies of the memory line. Invalidating purges the copies of the line

from the other remote caches which results in a single copy of the line in the writing

processor's cache, and updating forwards the write value to the other remote caches,

after which all caches are consistent. This consistency of data is maintained through

what is known as a cache coherence protocol.

Cache coherence protocols de�ne what actions are required when a processor mod-

i�es a cached copy of a memory line. The protocols must guarantee that after the

actions triggered by the write are completed, all caches in the system are consistent

with each other. Figure 1.4 summarizes the possibilities that result from either in-

validating or updating the remote caches and possibly updating memory. These four

possibilities result in two classes of protocols: update-based (UP) or invalidate-based

(INV). For update-based protocols, remote caches are updated on a write, and mem-

ory may be updated on every write. For invalidate-based protocols, remote caches

are invalidated and memory may be updated when a writing cache releases exclusive

ownership of the line. All protocols update memory's copy of a line if memory is not

consistent when the last cached copy of the line is replaced.
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Figure 1.4: Protocol Classes

The details of the cache coherence protocols are dependent on the structure of

the underlying interconnect. If all caches and memories are connected to a common

bus, a broadcast-based protocol may be used, but if a general interconnect is used in

which caches cannot observe all memory transactions, a directory-based protocol is

necessary [66].

1.3.1 Broadcast-Based Protocols

Broadcast-based protocols rely on the ability of each cache to observe or \snoop"

all memory transactions on the shared bus and change the state of the cache lines

appropriately [8]. Each cache operates independently of all other caches. If a cache

observes a write to a memory line it has a copy of, the cache coherence protocol will

either invalidate or update the cached copy depending on the type of protocol used.

Several broadcast-based protocols have been speci�ed in the literature. These

include both invalidate-based and update-based protocols. The invalidate-based pro-

tocols include Goodman's write-once [37], the Synapse [30], the Illinois [58] and the

Berkeley [29] protocols. The update-based protocols include the Fire
y [67] and the

Dragon [54] protocols. These protocols have been well studied [46, 26, 8, 7, 54, 67].

The next two sections give a brief description of how the Berkeley invalidate-

based protocol and the Dragon update-based broadcast protocols operate for typical

processor reads and writes.
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Berkeley Invalidate-Based Protocol

In the Berkeley invalidate-based protocol, a cache line may be in one of four states:

� Invalid - Cached copy of line is not valid,

� Unmodi�ed-Shared - Read only copy of line and memory is consistent,

� Modi�ed-Shared - Read only copy of line and memory is not consistent, or

� Dirty - Read/Write copy of line and memory is not consistent.

Figure 1.5 shows the state diagrams for the protocol. The state of a cache line may

change as a result of a local processor request or an observed memory transaction by

another processor, as shown in �gure 1.5a and 1.5b respectively.

On a processor read miss, the state of the cache line is set to UnModi�ed-Shared,

and if another cache has a copy of the line, then it supplies the data and changes its

local state appropriately.

On a processor write miss or a write hit to a read-only line, the state is set to

Dirty. All other copies of the line are invalidated, as the other caches observe the

write on the bus. If the line was owned by another cache, the owning cache supplies

the data and invalidates it copy.

The protocol has several important characteristics. First, exclusive ownership of

the line (Dirty state) is required before the line can be modi�ed. Second, cache-to-

cache transfers are used when possible to satisfy miss requests. This reduces the need

for expensive accesses to main memory, and third, main memory is only updated

when a dirty cache line is replaced by the owning cache.

Dragon Update-Based Protocol

In the Dragon update-based protocol a cache line may be in one of �ve states:

� Invalid - Cached copy of line is not valid,

� Read-Private - Only copy of line and memory is consistent,

� Private-Dirty - Only copy of line and memory is not consistent,
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Figure 1.5: Berkeley Invalidate-Based Cache Coherence Broadcast Protocol
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� Shared-Clean - Multiple copies of line and memory is consistent, or

� Shared-Dirty - Multiple copies of line and memory is not consistent.

Figure 1.6 shows the state diagrams for the Dragon update-based cache coherence

protocol. As in the Berkeley protocol, the state may change as a result of a processor

access or an observed memory transaction. The protocol uses a special sharing line

that is asserted if at least one other cache has a copy of an accessed line.

On a read miss, the local cache line state is set to either Read-Private if no other

shared copies of the line exist or to Shared-Clean if the sharing line is asserted during

the miss. If one of the caches has the line in the Private-Dirty state, then that cache

supplies the data for the miss and sets the cache line state to Shared-Dirty. If one

of the caches is already in the Shared-Dirty state, it simply supplies the data for the

miss. If one of the caches has the line in the Read-Private state, it supplies the data

for the miss and sets the cache line state to Shared-Clean.

On a write miss, all other copies of the line must be updated. The cache line state

is set to Private-Dirty if there are no other shared copies of the line, or it is set to

Shared-Dirty if other copies do exist. All caches with a copy of the line update their

copy and set the cache line state Shared-Clean. If a cache was in the Private-Dirty

state, it supplies the data for the miss. Memory's copy is no longer valid. When the

last Shared-Dirty copy is replaced, memory is updated.

For this protocol, exclusive ownership of the line is not required to modify the

line, but the protocol does requires the special sharing line. There can be multiple

writers of a line unlike the invalidate-based Berkeley protocol. The protocol also uses

cache-to-cache transfers.

Several studies have indicated that there is little performance di�erence between

broadcast-based cache coherence protocols which maintain consistency through inval-

idations or updates [27, 46].

1.3.2 Directory-Based Protocols

The main problem with broadcast-based protocols is that they rely on an interconnect

that allows broadcasts of all memory transactions. Interconnects such as buses do not
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Figure 1.7: Directory-Based Cache Coherence Protocols

scale well as the shared bus saturates after a small number of processors are attached

to it [68]. A scalable system is one in which the performance of the system increases

linearly with the size of the system. To build such a scalable system, other intercon-

nects that scale better are required. These interconnects, such as two-dimensional

meshes, do not allow caches to observe or \snoop" all other memory transactions.

This change in the network structure imposes two new requirements on the cache

coherence protocols [66]. First, the protocols must now explicitly notify other caches

when a cache line has been modi�ed. To send these noti�cations, the protocols must

be able to send and receive protocol level messages. The second requirement is that

a logical list of caches holding a copy of each memory line must be maintained so

that each write noti�cation may be sent only to the caches which have a copy of the

line. This list of caches holding a copy of each line is stored in what is known as

a \directory". The directory may be physically implemented in several ways as will

be described in section 3.1, but each directory entry will logically maintain a list of

caches holding a copy of the respective memory line.

The directory-based cache coherence protocols use the directory entry to forward

write information to the necessary caches. Figure 1.7 shows the basic operations for a

directory-based protocol. When a cache receives a write request from the processor,

it must query the directory to determine which caches must be invalidated or updated

for invalidate-based or update-based protocols respectively. Once all the caches have
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received and processed the invalidation or update, all caches in the system are consis-

tent. Section 3.3 will describe three di�erent implementations of invalidate-based pro-

tocols presented in the literature, and section 3.4 will present two new update-based

protocols. The remainder of this dissertation examines the performance di�erence

between these two classes of directory-based cache coherence protocols.

1.4 Organization of Dissertation

This dissertation is organized as follows. First, chapter 2 reviews two techniques for re-

ducing and tolerating memory access latency. These are relaxed memory consistency

models and software-controlled data prefetch. Chapter 3 reviews three invalidate-

based protocols described in the literature and describes two new update-based pro-

tocols. Validation of the update-based protocols is discussed. Chapter 4 describes

the methodology used in this dissertation to compare the performance of the cache

coherence protocols. This includes a description of the simulation environment, the

multiprocessor architecture, and the application space. Next, chapter 5 presents two

additional techniques that can be applied to update-based protocols to reduce and

tolerate memory access latencies. These include a word synchronization scheme and

a write grouping scheme. Next, chapter 6 presents the simulated performance of the

protocols studied, and chapter 7 examines the sensitivity of the protocol's perfor-

mance to variations in architectural parameters and to applications with migratory

data. Finally, chapter 8 concludes the dissertation by comparing and contrasting the

protocol classes in terms of their correctness, cost and e�ciency of maintaining the

desired memory consistency model.

1.5 Contributions of Dissertation

The main contribution of this dissertation is the development and analysis of update-

based cache coherence protocols for scalable shared-memory multiprocessors. It de-

signs and validates two update-based protocols based on a centralized directory and

a distributed directory. The work analyzes the performance of the update protocols
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and identi�es the two fundamental limitations of the update-based protocols: the

ine�ciency of single word updates and the mismatch between the coarse granular-

ity of the data synchronization and the �ne granularity of the data updates. Two

techniques are presented to overcome these limitations. The �rst, a write grouping

scheme, is used to improve the e�ciency of the updates; the second, a �ner grain

(word) data synchronization scheme, is used to provide a better match between the

granularity of the data synchronization and data updates.

The dissertation compares the performance of the update-based protocols to three

high performance invalidate-based protocols presented in the literature. The simu-

lations demonstrate the limitations of the update-based protocols and how the two

techniques, write grouping and word synchronization, improve the performance of the

update-based cache coherence protocols.

The sensitivity of the protocols to architectural parameters is examined. And,

�nally, the problem of migratory shared data and update-based protocols is discussed,

and a technique to limit the performance loss due to the unnecessary updating of

migratory data is presented.

Overall, the dissertation demonstrates that update-based protocols can be designed

to signi�cantly improve the performance of �ne-grain scienti�c applications.



Chapter 2

Latency Reducing and Tolerating

Techniques

There are several techniques that can be used to either reduce or tolerate memory

access latency. These techniques, which were brie
y introduced in the last chapter,

include processor caches, relaxed memory consistency models and software-controlled

data prefetch. The last chapter described the cache coherence problem introduced by

the addition of processor caches to shared-memory multiprocessor systems. In this

chapter, relaxed memory consistency models and software-controlled data prefetch

are described, and their impact on the cache coherence protocols is examined.

2.1 Memory Consistency Models

Memory consistency models describe the ordering of memory access events as seen

by the programmer. Censier and Feautrier [12] de�ne memory system coherence as

follows

De�nition 2.1 A memory scheme is coherent if the value returned on a load instruc-

tion is always the value given by the latest store instruction with the same address.

The problem with this de�nition is that the meaning of \latest store" is unclear. To

make the de�nition of memory consistency more precise, several memory consistency

13
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models have been de�ned in the literature. These include sequential consistency [52],

processor consistency [38], weak consistency [22] and release consistency [33].

Dubois and Scheurich [21] have de�ned several terms required to properly de�ne a

memory consistency model. The terms de�ne the ordering of memory access events.

These events may be a memory load or store if the type is not speci�ed.

De�nition 2.2 Initiated memory request: A memory access is initiated when a pro-

cessor has sent the request and the completion of the request is out of its control.

De�nition 2.3 Issued memory request: An initiated request is issued when it has

left the processor environment and is in transit in the memory system.

De�nition 2.4 Performed load: A load is considered performed at a point in time

when the issuing of a store to the same address cannot a�ect the value returned by

the load.

De�nition 2.5 Performed store: A store to address X by processor i is considered

performed at a point in time when an issued load to the same address returns the

value de�ned by a store in the sequence Si(X)+.

The sequence Si(X)+ refers to the stream of stores to address X from processor i.

From de�nition 2.5, the store is complete when a load returns the value of the store

or the value of any subsequently performed store.

In systems with atomic memory accesses, a memory access is performed with

respect to all processors at the same time. In systems where a store may be performed

at di�erent processors at di�erent times a further re�nement of the de�nition of

performed is required.

De�nition 2.6 Performed load with respect to processor k: A load is considered

performed with respect to processor k at a point in time when the issuing of a store

to the same address by processor k cannot a�ect the value returned by the load.

De�nition 2.7 Performed store with respect to processor k: A store to address X

by processor i is considered performed with respect to processor k at a point in time

when an issued load to the same address by processor k returns the value de�ned by

a store in the sequence Si(X)+.
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For non-atomic memory systems, the de�nition of performed is now given by

De�nition 2.8 Performed store: A store is performed when it is performed with

respect to all processors.

De�nition 2.9 Globally Performed load: A load is globally performed when it is

performed with respect to all processors and if the store which is the source of the

returned value is globally performed.

For systems with a write bu�er, the de�nitions must be slightly modi�ed [32].

De�nition 2.10 Performed store with respect to processor k (with write bu�ering):

A store by processor i eventually performs with respect to processor i. If a load by

processor i performs before the last store (in program order) to the same address

by processor i performs with respect to processor i, then the load returns the value

de�ned by that store. Otherwise, the load returns the value de�ned by the last store

to the same address (by any processor) that performed with respect to processor i

(before the load performs). A store is performed when it is performed with respect

to all processors.

This new de�nition is required since a load request may �nd the desired data in the

write bu�er and, therefore, be performed without querying the cache or interacting

with the coherence mechanism.

With these de�nitions, several di�erent memory consistency models can now be

presented. These include sequential consistency, processor consistency, weak consis-

tency and release consistency. The models vary on how strongly ordered the memory

accesses are. Sequential consistency requires the ordering of accesses from all pro-

cessors. The other consistency models, known collectively as relaxed consistency

models, relax this total ordering and only specify the order of accesses by individual

processors.

2.1.1 Sequential Consistency Model

Lamport [52] has de�ned a sequential consistency model as
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De�nition 2.11 A system is sequentially consistent if the results of any execution is

the same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence in the

order speci�ed by its program.

In a sequentially consistent multiprocessor, memory accesses appear to execute

atomically in some total order [51]. To a programmer, a sequentially consistent

multiprocessor would be indistinguishable from a multitasking uniprocessor.

Scheurich and Dubois [21] have described a set of su�cient conditions for sequential

consistency. The conditions, slightly modi�ed and combined [69], are

Condition 2.1 Su�cient conditions for sequential consistency: Before a load or

store access is allowed to perform with respect to any processor, all previous load

accesses must be globally performed and all previous stores must be performed.

Implementation

For invalidate-based protocols, these conditions may be satis�ed by delaying the issu-

ing of a memory access from processor i until all previous memory accesses issued by

this processor have been performed. With this constraint, load accesses by di�erent

processors are not ordered, but the stores to the same address are, and the stores are

also ordered with respect to the loads. The invalidation mechanism provides for this

store ordering. When a store to address X is issued by processor i, other processors

may still globally perform loads from this address. But once the store is performed

with respect to processor j, any load from address X issued by processor j cannot be

globally performed until the store issued by processor i has been performed.

This ordering of stores is possible in the invalidate-based protocols since the pro-

cessor issuing the store, processor i, obtains exclusive ownership of the line. Any load

request for this line is blocked by processor i until the store has been performed (all

invalidations have been acknowledged). For example, �gure 2.1 shows a sequence of

loads and stores for three processors. First, processor i and k issue a load from address

X and processor j issues a store to address X. The loads can be globally performed

since the store has not yet been performed with respect to either processor i or k.
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Once the invalidation request reaches processor i, the store is considered performed

with respect to processor i. The next load from address X issued by processor i is

now blocked by processor j since the pending store has not yet been performed (all

invalidations acknowledged). Once the invalidation has reached processor k and both

processor i and k acknowledge the invalidation, the store is considered performed,

and the blocked load of processor i can be globally performed.

Processor i

Load X 
    Issued
    Globally Performed

Load X
    Issued

    Globally Performed 

Processor j

Store X
    Issued

    
    Performed

Inv

I-Ack

Processor k
 
Load X
    Issued
    Globally Performed Inv

I-Ack
Miss

Reply

Figure 2.1: Sequential Consistency - Invalidate-Based Protocols

The ordering of accesses to a given line is determined by the relative timing of the

invalidation request. If a load is issued by processor i before a store from processor

j has been performed with respect to processor i, the load will appear as if it was

performed before the store in the total ordering. If the load by processor i is issued

after the store is performed with respect to processor i then the load will appear as if

it occurred after the store in the total ordering. The invalidation mechanism allows

for the ordering of loads with respect to stores.

For update-based protocols, neither the loads nor stores are ordered. This lack

of ordering for the stores creates a signi�cant problem for update-based protocols

attempting to implement a sequential consistency model. To implement such a model,

the update-based protocols must be augmented with a mechanism that will allow for

the ordering of stores. Wilson and LaRowe [72] have demonstrated how a two-phase

update would allow for this proper ordering of stores.

The example shown in �gure 2.2a, taken from Wilson and LaRowe [72], demon-

strates how an update-based protocol may violate sequential consistency even if a

processor delays all memory accesses until all previous memory accesses from the



18 CHAPTER 2. LATENCY REDUCING AND TOLERATING TECHNIQUES

Processor i

x = 1;

Processor j

while (x != 1);
print y;
print y;

Processor k

y = 1;
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while (y != 1);
print x; 
print x;
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b) Update flow
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Figure 2.2: Violating Sequential Consistency - Update-Based Protocols

same processor have been performed. This requirement was su�cient for invalidate-

based protocols to provide sequential consistency.

In the example, processors i and k write to two control variable X and Y respec-

tively. If the system is sequentially consistent, such as with a uniprocessor, then either

both processors print two ones, one processor prints a zero followed by a one and the

other prints two ones, or one processor prints two zeros and the other prints two ones.

If both processors print a zero followed by a one, then sequential consistency has been

violated. This ordering may occur in an update-based protocol if the directories for

the two variable, X and Y , are located at di�erent nodes. In this case, the path of

the updates will di�er and the stores to X and Y may be performed with respect to

processors j and l in a di�erent order, as shown in �gure 2.2b. This case violates the

condition that an issued store be performed before any other memory accesses may

be issued.
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The problem arises because when a store is performed with respect to processor

i, the processor obtains the new value of the store. Other processors to which the

store has not yet been performed are still able to access the old value. As in the

invalidate-based protocols, the load performed at processor j prior to the store being

performed at processor j simply appears prior to the store in the total ordering. The

problem is that the processors to which the store has been performed with respect to

can issue a load which will be performed before the store has been performed. This

problem is prevented in invalidate-based protocols since the writing cache controls

when the loads can be performed.

A two-phase update prevents this scenario by issuing a store to address X in

two phases. The �rst phase of the store informs each cache with a copy of the line

containing X that an update has been issued. These caches would not allow their

respective processors to perform accesses to this address. After the �rst phase of the

update has been performed with respect to all processors, the second phase of the

update sends the actual data to the appropriate caches. Once cache i receives this

update, processor i is able to perform loads from address X. This scheme prevents

processor i from performing a load of the new value from address X while processor

j may load an old value.

2.1.2 Processor Consistency Model

To improve system performance, the memory consistency model may be relaxed. The

�rst of such relaxed memory consistency models is the processor consistency model

de�ned by Goodman [38]. Goodman gives the conditions for processor consistency as

Condition 2.2 Conditions for processor consistency: Before a load is issued by a

processor, all previous load accesses by that processor must be performed. Before a

store is issued by a processor, all previous memory accesses by that processor must

be performed.

Processor consistency requires that stores from a processor be performed with

respect to all processors in the same order, but stores from di�erent processors are

not ordered. The condition also allows for reads to bypass writes and, therefore, the
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introduction of a write bu�er, but stores may only be retired from the write bu�er

after they have been performed [31]. This retirement constraint limits the number of

outstanding stores per processor to one.

Implementation

For both classes of protocols, implementing processor consistency is not di�cult.

Since loads are able to bypass stores, the processor may simply issue a load and stall

until the load has been performed. For the stores, the processor issues the store

to the write bu�er (stalls if write bu�er is full) and continues execution. As noted

above, the stores cannot be retired (removed) from the write bu�er until the store

has been performed. This retirement constraint guarantees ordering of stores since

each processor can have at most one issued, but not yet performed store.

2.1.3 Weak Consistency Model

The next progression in memory consistency models is a weak consistency model [22].

In weak consistency, accesses are divided into either synchronization accesses or nor-

mal accesses. These accesses are de�ned as [69]

De�nition 2.12 Synchronization access: An access is a synchronization access if it

is used to order events. For example, a synchronization 
ag can be used to order the

accesses to a block of data by a producer and consumer, or a lock can be used to

order process accesses to a critical section of code.

De�nition 2.13 Normal access: An access is a normal access if it is not used to

order events. These accesses include simple loads and stores.

If the synchronization events are identi�ed by the programmer or compiler, then

the caches and memory must be consistent only at these synchronization points.

Dubois, et al [21] proposed a weak consistency model and presented conditions for

weak consistency (as slightly modi�ed by Gharachorloo [31])

Condition 2.3 Conditions for weak consistency: Before a normal access is allowed

to perform with respect to any other processor, all previous synchronization accesses
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must be performed, and before a synchronization access is allowed to perform with

respect to any other processor, all previous normal accesses must be performed. Syn-

chronization accesses are sequentially consistent with respect to one another.

Implementation

For both classes of protocols, the weak consistency model introduces the need for

a fence instruction. A fence instruction stalls the processor until all previous syn-

chronization and normal accesses have been performed. Thus, hardware counters are

required to keep track of outstanding accesses. For invalidate-based protocols, these

accesses include outstanding write misses and unacknowledged invalidation requests,

and similarly for update-based protocols, they include outstanding write misses and

unacknowledged write updates. When a processor issues a fence instruction, the pro-

cessor is stalled until all counters are zero, which indicates that all writes have been

performed.

In weak consistency, the burden of synchronization is placed on the compiler and

programmer. It is their responsibility to place synchronization accesses at the proper

locations in the code to protect critical regions and guarantee correct access order

to shared data. Fence instructions are requires around synchronization accesses to

satisfy condition 2.3.

2.1.4 Release Consistency Model

The �nal memory consistency model discussed in this dissertation is the release con-

sistency model [33]. In this model, the conditions of weak consistency are relaxed

even further. Release consistency divides memory accesses into two major categories:

competing and normal. Two accesses are competing if they are to the same memory

location and at least one access is a store. The competing accesses are further divided

into synchronization accesses and non-synchronization accesses. The synchronization

accesses are used to order events and are divided into acquire or release accesses.

These synchronization accesses are de�ned by Gharachorloo, et al [33] as
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De�nition 2.14 An acquire synchronization access (e.g., a lock operation or a pro-

cess spinning for a 
ag to be set) is performed to gain access to a set of shared

locations.

De�nition 2.15 A release synchronization access (e.g., an unlock operation or a

process setting a 
ag) grants permission to access a set of shared locations.

Note that an acquire is a load operation and a release is a store operation.

In weak consistency, processors must wait for a synchronization event to be per-

formed before continuing. Release consistency relaxes the consistency model by not-

ing that a process performing a release access does not need to wait for the release's

store operation to be performed and that a process performing an acquire access does

not need to wait for previous accesses to be performed. The conditions for release

consistency are given by Gharachorloo, et al [33] as

De�nition 2.16 Conditions for release consistency: Before a normal access is al-

lowed to perform with respect to any other processor, all previous acquire accesses

must be performed, and before a release access is allowed to perform with respect to

any other processor, all previous normal accesses must be performed. Acquire and

release accesses are processor consistent with respect to one another.

Implementation

As with weak consistency, hardware counters are also required to keep track of out-

standing accesses [33]. Again, the burden is placed on the programmer and compiler

to insert synchronization accesses and fence instructions at the proper locations in

the code, but the release consistency model requires fewer fence operations than the

weak consistency memory model.

2.1.5 Summary

In this section four memory consistency models were described. The strongest model,

sequential consistency, requires that all memory accesses appear atomic. This require-

ment presents di�culties for update-based protocols, but a two-phase update-based
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protocol can be used to implement sequential consistency. Relaxed consistency mod-

els were introduced to improve system performance. The relaxed consistency models

allow more overlap of memory accesses. This overlap e�ectively reduces the memory

access latency by hiding it behind other useful work. The �rst relaxed consistency

model, processor consistency, required that stores from a given processor be per-

formed with respect to all other processors in the same order as they were issued.

Weak consistency and release consistency divide accesses into normal load and store

accesses and synchronization accesses and only require memory and caches to be con-

sistent at the synchronization points. Release consistency goes further by dividing

synchronization accesses into acquire and releases and relaxes the ordering of these

accesses. In the remainder of this dissertation, the applications studied will use a

release consistency memory model.

2.2 Software-Controlled Data Prefetch

Another technique to reduce the memory access latency is software-controlled, non-

binding data prefetch [55]. The data prefetch moves the requested data to the cache

nearest the processor. This data prefetch can be used to hide a portion of the data miss

latency in a typical producer and consumer interaction [55], as shown in �gure 2.3. In

the �gure, the producer and consumer share a block of data using a release consistency

memory model or what will be referred to as block synchronization throughout the

remainder of this dissertation. The producer computes the data, writes the results

to a shared bu�er, and then uses a fence instruction to stall the processor until all

writes have been performed. Once the writes have been performed, the semaphore is

set. Consuming nodes wait for the semaphore to be set before attempting to access

the shared data.

In the invalidate-based protocols, a write prefetch (or exclusive read) can be used

to hide a portion of the producer's fence latency by issuing write requests early and

overlapping multiple requests, as shown in �gure 2.3. The write prefetch allows the

write miss and fence latency to be overlapped with useful work.
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Producer

Consumer
Read

Consumer’s
Read Prefetch

Wait on Semaphore

Producer’s 
Write Prefetch

Write Set SemaphoreFenceWork
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Read Prefetch

{
{

Invalidate-Based
Protocols

Update-Based
Protocols

Line A

Line B

Line A

Line B

Line A

Line B

Update Protocols prefetch data lines
before they are written to induce updates.

Invalidate Protocols prefetch data lines 
after they are written to avoid invalidation 
of prefetched lines. 

Figure 2.3: Block Synchronization with Prefetch

A read prefetch can also be used to reduce the consumer's read miss latency in

an invalidate-based system, but the prefetches should be issued after reaching the

synchronization point. If the prefetches are issued earlier, two scenarios are possible.

In the �rst case, the producer has not yet written the data. In this case, the prefetched

lines will be later invalidated, and the work done to prefetch and invalidate the lines

will be wasted. In the second case, the producer has completed writing the data before

the consumer's prefetch is received. In this case, the prefetch will obtain the proper

data, but the time saved compared to prefetching after the synchronization point will

be minimal since the producer would have also set the semaphore and the consumer's

read of the semaphore would have found it set. The latency saved by prefetching early

is small compared to the high cost of invalidated prefetches. For the invalidate-based

protocols and the applications examined in this dissertation, prefetching before the

synchronization point never resulted in a faster execution time than prefetching after

the synchronization point for the invalidate protocols.

In the update-based protocols, read prefetches can be used not only to hide read

miss latency behind useful work, but they also can be used to induce updates. If the

prefetch is issued before the data is written by the producer, the consumer's cache will

be updated when the data is written. The prefetch allows the consumers to express
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an early interest in the data.

2.3 Summary

This chapter reviewed two techniques to reduce and tolerate memory access latency.

The �rst, relaxed memory consistency models, relaxed the ordering of accesses. This

technique allowed for more overlap of memory accesses and, therefore, a reduction

in memory access latency. The second technique, software-controlled data prefetch,

allowed miss latency to be tolerated by overlapping miss requests with useful work

or other miss requests. Prefetch also has an important role in update-based cache

coherence protocols; it allows the consumers of data to express an early interest in

a piece of data. If the consumers prefetch the data, then when it is written by

the producer, the consumer's cache will be updated. Chapter 5 presents two other

techniques that can be used with update-based protocols to help reduce and tolerate

memory access latency.



Chapter 3

Directory-Based Protocols

This chapter describes the directory-based cache coherence protocols studied in this

dissertation. First, section 3.1 reviews the directory structures required by the pro-

tocols, and section 3.2 describes protocol level deadlock. Next, section 3.3 brie
y

reviews three invalidate-based protocols presented in the literature, and section 3.4

presents two new update-based protocols. In particular, section 3.4.1 describes a cen-

tralized directory update-based protocol and section 3.4.2 describes a singly-linked

distributed directory update-based protocol. Finally, section 3.5 discusses validation

of the update-based protocols using an exhaustive validation tool called Mur' [19].

3.1 Directory Structures

Directory-based cache coherence protocols must maintain a directory entry for each

memory line in the system. This directory entry indicates which caches in the system

have a copy of the respective memory line. Each directory entry can be stored in

a single, central location (centralized directory protocol) or distributed among the

caches holding a copy of the line (distributed directory protocol). In both cases, the

directory entries are distributed throughout the system with their respective memory

lines.

26
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3.1.1 Centralized Directory

In a centralized directory (CD) protocol, each directory entry contains a pointer to

each cache in the system that contains a copy of the respective memory line. In the

CD protocols studied in this work, a fully mapped directory is used in which there is

a single bit pointer for each cache in the system [66]. For example, �gure 3.1 shows

a directory entry for a memory line in a four cache system. In the example, caches 1

and 3 have a copy of the given memory line.

Directory

1 0 1 0

Cache 1 Cache 2 Cache 3 Cache 4

One bit vector per 
memory line.
Bits = NCaches

Figure 3.1: Centralized Directory Structure

In this fully mapped scheme, each directory entry contains NCaches bits for a total

storage requirement of

Bits = NCaches �NMemoryLines

= O(NCachesNMemoryLines)

where NCaches is the number of caches and NMemoryLines is the number of memory

lines in the system.

3.1.2 Distributed Directory

In a distributed directory (DD) protocol, a linked list structure is used to maintain the

list of caches that have a copy of a given memory line. The directory entry contains a

pointer to the head of this list, and each cache line contains the necessary pointers to

construct the list. The list may be singly-linked or doubly-linked. It is important to
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note that the order of the list is not optimized in any way. The order is determined

by the order that the requests for the memory line reach the directory.

Singly-Linked Directory Structures

In a singly-linked distributed directory protocol [70], a singly-linked list is used to

maintain the list as shown in �gure 3.2. In this example, caches 0, 2 and 3 have a

copy of the line.

Caches

Directory

3

Cache 3 Cache 0 Cache 2 Cache 1

0 2

One cache pointer per 
memory and cache line.
Bits per Pointer = log  N 

2

Figure 3.2: Singly-Linked Distributed Directory Structure

In this case, each directory entry contains log2(NCaches) bits, and each cache line

must also include a single pointer. The directory now requires a total of

Bits = NMemoryLineslog2(NCaches) +NCacheLineslog2(NCaches)

= log2(NCaches)(NMemoryLines +NCacheLines)

= O(log2(NCaches)NMemoryLines)

which scales better than the fully-mapped CD directory structure as the size of the

system (NCaches and NMemoryLines) increases.

Doubly-Linked Directory Structures

Alternatively, a doubly-linked directory structure may be used [42], as shown in �g-

ure 3.3. In this example, caches 0, 2 and 3 have a copy of the line.
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Directory

3

Cache 0 Cache 2 Cache 1

One pointer per 
memory line and two 
per cache line.
Bits per Pointer = log  N 

2 Caches

Cache 3
M 0 3 2 0

Figure 3.3: Doubly-Linked Distributed Directory Structure

The amount of storage required is slightly more than that of the singly-linked

distributed directory structure since each cache line must now maintain two pointers.

The directory now requires

Bits = NMemoryLineslog2(NCaches) + 2NCacheLines log2(NCaches)

= log2(NCaches)(NMemoryLines + 2NCacheLines)

= O(Log2(NCaches)NMemoryLines)

of total storage.

3.1.3 Scalability of Directory Structures

As shown above, the centralized directory structure scales as O(NCachesNMemoryLines),

while the distributed directories scale better as O(log2(NCaches)NMemoryLines). How-

ever, several di�erent approaches have been suggested to improve the scalability of

the centralized directory schemes. These include limited pointer schemes and cached

directories.

The limited pointer schemes limit the number of cached copies of each memory

line. When this limit is exceeded, the limited pointer schemes either invalidates one

of the copies to make room for the new request [4], assumes all caches now have a

copy of the line [4], switches to a coarse grain mode where each bit represents several

caches [39] or traps to software to extend the directory list [14]. With a limited pointer
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scheme, the centralized directory scales as O(NLimitedNMemoryLines) where NLimited is

the number of bits in the limited directory entry.

The other approach notes that the maximumnumber of cached copies of a memory

line is limited by the total size of all caches and not by the size of memory. In this

case, a directory cache could be used to cache this smaller set of directory entries [39].

Also, the bits for each directory entry can be dynamically allocated out of a pool of

directory bits [62].

Several studies have suggested that the average number of shared copies of a

memory line is small [13, 57, 71, 4, 26]. The results presented by the researchers

demonstrate that the limited directory schemes result in a minimal performance

loss [4, 14, 39], and similarly, the cached directory has also been shown to have a

minimal a�ect on performance [39]. These results are very dependent on the number

of shared copies of a line in a given application.

Some of the limited pointer schemes require that the directory be able to invalidate

cached copies of a line. The centralized directory update-based protocol presented in

this work currently does not support invalidations, but the protocol could be extended

to support such directory initiated invalidations.

3.2 Protocol Deadlock

If the system has �nite bu�ering, then protocol level deadlock is possible [69, 53, 35]1.

For example, �gure 3.4 shows two caches that are sending requests to each other

through a set of �nite bu�ers. Each bu�er can hold a single request. First, cache A

sends two requests to cache B, and it begins processing a request that will generate

another request to cache B. But because the bu�ers are already full, cache A must

wait until a bu�er becomes available before it is able to complete the processing of the

new request. Meanwhile, cache B generates two requests to cache A, and it attempts

to generate a third request. The system is now deadlocked. Neither cache A nor B

can complete the processing of their current request because their output bu�ers are

full, and they will never empty. A timeout must be used to detect such deadlocked

1The actual network is assumed to be deadlock free.
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Cache B
(Busy)Cache A

Cache B
(Busy)

Cache A
(Busy)

(a) Cache A sends two requests to Cache B which is currently busy.
      Cache A begins processing a request that will generate another 
      request for Cache B.

(a) Cache A cannot complete current request since the buffer is full.
      Meanwhile, Cache B generates two requests to Cache A and
      attempts to generate a third request. Neither cache can proceed
      since their output buffers are full.  The system is deadlocked.

Single request
buffers

A2 A1

A2 A1

B1 B2

Figure 3.4: Protocol Level Deadlock

situations. Once detected, there are two basic techniques to handle deadlock.

The �rst technique attempts to avoid deadlock by using local memory to expand

the bu�er space as needed [49]. When a bu�er �lls and a possible deadlock situation

is detected, packets are removed from the bu�er and placed in a secondary bu�er

created in the local memory. The cache and directory controllers must then process

packets from this secondary bu�er until it is empty. This technique essentially creates

an almost in�nitely sized bu�er, but it requires a tight coupling of the cache controller,

directory controller and local memory.

The second technique attempts to break the deadlock by removing requests from

the deadlocked bu�er and sending them back to their source through an exception

network [53, 69, 35]. To minimize the probability of deadlock, message types are
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statically divided by the protocol into request and reply messages. A request message

may generate another message and, therefore, lead to deadlock. A reply message

never generates any new messages and, therefore, can always be consumed. A packet

can be consumed if all resulting packets generated from the request, if any, can be

successfully transmitted. The protocols examined in this dissertation use this second

technique to avoid protocol level deadlock.

This second technique requires three logical networks: a request, reply and ex-

ception network. The reply network is deadlock free since replies can always be

consumed. The request network may experience deadlock if the request at the head

of the bu�er generates another request. If the request generates a reply, then the

request will eventually be consumed since the reply network will never deadlock.

The request-request deadlock is broken by sending the request at the head of the

deadlocked bu�er back to the source of the request to be retried. The act of removing

a message from the deadlocked network may break the deadlock by freeing critical

network resources. If not, this process would remove another request packet and send

it back to the source. This is repeated until the deadlock condition is eliminated.

The separate request and reply networks also require logically separate controllers

in both the cache and directory. Otherwise, a cache that is attempting to process

a request would not be able to consume pending replies. This would violate the

condition that replies always be consumed. Also, since replies are always consumed,

the reply network may also be used as the exception network. This requires that the

exceptions must always be consumed. If the network resources required to retransmit

an exception packet are deadlocked, a trap handler must be invoked. The handler

must store the exception packet in memory (using uncacheable accesses) and block

the processor from generating any new requests. Eventually, the pending requests

will be satis�ed.

The frequency of deadlock is dependent on the size of the bu�ers. If reasonable

bu�er sizes are used, deadlock is extremely rare [69, 53]. In the system simulated in

this work, the cache and memory bu�ers were 128 words deep, and deadlock never

occurred for any of the cases examined [35, 34, 36].
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3.3 Invalidate-Based Protocols (INV)

This dissertation compares update-based protocols with three invalidate protocols:

a centralized directory protocol (CD-INV) that is similar to DASH [53], a singly-

linked distributed directory protocol (DD-INV) [70] and a doubly-linked distributed

directory protocol (SCI-INV) [45, 42], which is the IEEE standard protocol. This

section gives a brief description of how these three invalidate-based protocols operate.

The invalidate-based protocols require that the writing cache obtain exclusive own-

ership of the line. With di�erent directory structures, the protocols di�er in how the

invalidations, used to obtain exclusive ownership of the line, are performed. The

protocols also di�er in how misses are satis�ed.

3.3.1 Centralized Directory (CD-INV)

In the CD-INV protocol, each cache line can be in one of six possible states:

� Invalid - the cache's copy of the line is not valid,

� Reading - the cache has issued a read miss and is waiting for a reply,

� Writing - the cache is waiting for exclusive ownership of the line,

� Replacing - the cache line is being replaced,

� Shared - the cache has a read-only copy of the line, or

� Exclusive - the cache has an exclusive read-write copy of the line (cache is owner

of line).

Each memory line can be in one of four states:

� Absent - no caches have a copy of the line,

� Shared - at least one cache has a read-only copy of the line - memory is consistent,

� Exclusive - one cache has an exclusive read-write copy of the line - memory is

not consistent, or

� Update Pending - the directory is awaiting a write back of the memory line.
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The next few sections describe the actions taken for typical processor reads and

writes.

Read Miss

Figure 3.5 shows the actions for a processor read miss when the memory line state

is Absent or Shared. The cache �rst sends a Read Miss (RM) to the directory and

the cache line state is set to Reading. The directory responds with a Read Miss

Reply (RMR) and the memory line's data. The memory line state is set to Shared.

When the cache receives the Read Miss Reply and a copy of the memory line from

the directory, the cache line state is set to Shared, and the cache returns the desired

word to the processor. The directory now points to requesting cache.

Memory/
Directory

(S)

Cache
(S)

3. Directory points to cache1. Read Miss to Directory

Memory/
Directory

(A|S)

Cache
(R)

RM

2. Read Miss Reply to cache

Memory/
Directory

(S)

Cache
(R)

RMR w/Data
Request/Reply

Memory Line State

Cache Line State

Directory Pointer

Figure 3.5: CD-INV: Read Miss to Absent or Shared Memory Line

If the memory line state is Exclusive on a read miss, then the memory line's

current data must be fetched from the owning cache, as shown in �gure 3.6. After

receiving the Read Miss from the cache, the directory sends a Write Back Shared

(WBS) to the owning cache, and the memory line state is set to Update Pending.

This state is needed since all other requests to the line must wait until the line's data

is received from the owning cache. Requests to the memory line while its state is

Update Pending are bounced back to the sender to be retried. After receiving the

Write Back Shared, the owning cache returns the line's data to memory and to the

requesting cache. After receiving the Update Line (UL) reply and the line's data from

the owning cache, memory is updated and the memory line state is set to Shared. The

directory now points to both caches which are in the Shared state.
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1. Read Miss to Directory

Memory/
Directory
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Cache2
(E)

Cache1
(R)
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Memory/
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(E)

Cache1
(R)
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    memory and requesting cache

Memory/
Directory

(UP)
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Cache1
(R)

UL w/Data

Memory/
Directory

(S)
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Cache1
(S)
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w/Data

Figure 3.6: CD-INV: Read Miss to Exclusive Memory Line
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Write Miss

The actions for a write miss to a memory line in the Absent state are identical to

that of a read miss except that the cache and memory line state is set to Exclusive

rather than Shared, but if the memory line is in the Shared state, all other copies of

the line must be invalidated, as shown in �gure 3.7. After receiving the Write Miss,

the directory sends a Write Miss Reply, the number of pending invalidates and the

line's data to the requesting cache. The directory sends an Invalidate signal to each

cache holding a Shared copy of the memory line, and the memory line state is set

to Exclusive. After receiving the Invalidate signal, each remote cache invalidates its

copy of the line and sends an Invalidate Acknowledge (Inv-Ack) to the writing cache.

The writing cache cannot release exclusive ownership of the line until all pending

invalidations for the line have been acknowledged.

1. Write Miss to Directory

Memory/
Directory

(S)

Cache2
(S)

Cache1
(W)

WM

2. Invalidate(s) to all caches with line
    WMR with data & count to requesting cache

Memory/
Directory

(E)

Cache2
(S)

Cache1
(W)

Invalidate

3. Caches repy with Invalidate-Ack 

Memory/
Directory

(E)

Cache2
(I)

Cache1
(E)

Inv-Ack

Memory/
Directory

(E)

Cache2
(I)

4. Directory points to owning cache

Cache1
(E)

WMR
w/Data

w/Count

Figure 3.7: CD-INV: Write Miss to Shared Memory Line

The actions for a write miss to a memory line in the Exclusive state are similar to a

read miss to a line in the Exclusive state as described above. The writing cache sends
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a Write Miss to the directory, as shown in �gure 3.8. The directory must fetch the

line from the owning cache and invalidate its copy. The directory does this by sending

a Write Back Invalidate (WBI) to the owning cache. The owning cache invalidates

its copy, forwards the line to the requesting cache, and informs the directory that the

Write Back Invalidate has been performed. The requesting cache now has exclusive

ownership of the line. Note that memory is not updated since the copy of the line

held by the old owner is no longer valid since the new owning cache may modify it

locally.

4. Directory points to owning cache

Memory/
Directory

(E)

Cache2
(I)

Cache1
(E)

1. Write Miss to Directory

Memory/
Directory

(E)

Cache2
(E)

Cache1
(W)
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2. Write Back Invalidate to 
     owning cache

Memory/
Directory

(UP)

Cache2
(E)

Cache1
(W)

WBI

3. Owning cache sends ack
    and the line’s data

Memory/
Directory

(UP)

Cache2
(I)

Cache1
(W)

Line Sent

WMR
w/Data

Figure 3.8: CD-INV: Write Miss to Exclusive Memory Line

Write Request

A write to a cache line that is in the Shared state requires that the cache obtains

exclusive ownership of the line. The required actions are similar to those of a Write

Miss when other shared copies of the line exist, as shown in �gure 3.9. The only

di�erence is that the cache already has a copy of the line so the directory responds

with aWrite Granted (WG) message and a count of pending invalidations. TheWrite

Granted message gives the cache exclusive ownership of the line.

A write to a line in a pending state, states that are waiting on responses, must

also be handled correctly. A write to a cache line in the Writing state can be issued

since the cache's previous request for ownership of the line will eventually be granted.

But a write to a line in the Reading state must be blocked at the write bu�er until
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Figure 3.9: CD-INV: Write Request
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the outstanding Read Miss Reply is received2.

In summary, a writing cache must obtain exclusive ownership of the line which

requires the invalidation of all other cached copies of the line. The CD structure

allows the invalidations to be done in parallel, and the updating of memory on a

write back allows subsequent misses to be serviced by the directory.

3.3.2 Distributed Directory

The state diagrams for the distributed directory protocols, DD-INV and SCI-INV,

contain more than twice the number of states than in the CD-INV protocol. These

extra states are needed to control and maintain the linked lists of caches. Therefore,

because of this complexity, the state diagrams for these protocols will not be pre-

sented here, only the actions required for reads and writes will be examined. The

terminology used to describe the actions will be similar to those used for the CD-INV

protocol rather than the actual terminology used by the SCI-INV and DD-INV proto-

cols. This similar terminology will make the comparison easier to follow. A detailed

description of the DD-INV protocol is given by Thapar in his Ph.D. dissertation [69],

and the details of the Typical SCI-INV protocol are given in the IEEE SCI P1596

speci�cations [42].

3.3.3 Singly-Linked Distributed Directory Protocol

This section brie
y describes the singly-linked distributed directory invalidate-based

(DD-INV) protocol.

Read Miss

For a read miss to a memory line that is absent from all other caches, the actions

are identical to the previous protocol. If the memory line is present in other caches,

the Read Miss signal is forwarded to the cache at the head of the list, as shown in

�gure 3.10. This cache sends a Read Miss Reply along with the data to the requesting

2A write to a line in the Reading state can occur if a read bypasses a write stored in the write

bu�er, or a write follows a prefetch.
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4. New cache is now head of linked list 

Memory/
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RMR 
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1. Read Miss to Directory

Memory/
Directory

Cache2
HeadCache1

RM

Figure 3.10: DD-INV: Read Miss

cache. The reading cache now becomes the head of the list. The next read miss will

be satis�ed by this cache.

Write Miss

For a write miss, all other cached copies of the line must be invalidated. The writing

cache sends a Write Miss to the directory, as shown in �gure 3.11. After receiving

the miss, the directory sends a Write Miss Forward (WMF) signal to the cache at

the head of the list of caches. This cache invalidates its copy, sends the Write Miss

Forward down the list of caches, and replies to the writing cache with a Write Miss

Reply and the line's data. The caches down the list invalidate their copy of the line as

they receive the Write Miss Forward signal. The �nal cache in the list replies to the

writing cache with a Write Miss Forward Performed (WMF-P). The writing cache

now has exclusive ownership of the line.



3.3. INVALIDATE-BASED PROTOCOLS (INV) 41
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Figure 3.11: DD-INV: Write Miss
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Write Request

For a write to a cache line in the Shared state, the writing cache sends an Invalidate

signal to the next cache in the list, as shown in �gure 3.12. The caches down the list

invalidate their copy as they receive the Invalidate signal. The �nal cache in the list

sends an acknowledgment back to the writing cache. This operation has invalidated

all caches down the list from the writing cache. If the writing cache is not at the head

of the list, it also sends a Write Miss to the directory. When the directory receives

the Write Miss, it sends a Write Miss Forward to the head of the list. This cache

invalidates its copy of the line and forwards the signal to the next cache. When the

writing cache receives both the acknowledgment from the invalidations and theWrite

Miss Forward, if it was not the head of the list, the cache has obtained exclusive

ownership of the line.

3. Write Miss Forward down list 

Memory/
Directory

Cache1
WMF

Cache2 Cache3

1. Write Miss to Directory and Invalidate to
     next cache in list

Memory/
Directory

Cache2Cache1
Head

WM

Cache3
Invalidate

2. Write Miss Forward to head of list and cache at
     end of list acknowledges invalidation

Memory/
Directory

Cache1
Head

WMF 

Cache2 Cache3

I-Ack

3. Cache now has exclusive copy of line

Memory/
Directory

Cache1
Cache2

Exclusive Cache3

Figure 3.12: DD-INV: Write Request

As in the CD-INV protocol, writes to a line in the Writing state are allowed to

be performed. But writes to a line in the Reading state must be blocked at the write



3.3. INVALIDATE-BASED PROTOCOLS (INV) 43

bu�er.

In summary, the DD-INV protocol requires exclusive ownership of the line if the

line is to be modi�ed. The DD-INV protocol uses a pipelined technique to invalidate

all other copies of a line. Memory is not updated when exclusive ownership of the

line is released, but rather, the cache at the head of the list services all miss requests.

3.3.4 Doubly-Linked Directory Directory Protocol

This section brie
y describes the Typical IEEE SCI invalidate-based (SCI-INV) pro-

tocol.

Read Miss

For a read miss to a memory line that is absent from all other caches, the actions

are identical to that of the previous protocols. The cache sends a Read Miss to

the directory, and the directory responds with a Read Miss Reply and a copy of the

memory line. The directory now points to the cache.

On a read miss to a line that is present in other caches, the new cache must be

added to the head of the linked list, as shown in �gure 3.13. The directory responds

to the Read Miss with the memory line's data and a pointer to the old head of the

linked list. The new cache sets its backward pointer to point to the directory and

its forward pointer to point to the old head of the list. It then sends a Prepend (P)

signal to the old head of the list to add itself to the head of the list. The old head

changes its backward pointer to point to the new cache and sends a Prepend Reply

(PR) to the new cache. The new cache has now been added to the head of the linked

list. If memory's copy was not valid, then the old head of the list would include the

data in the Prepend Reply message.

Write Miss

For a write miss, the writing cache �rst becomes the head of the linked list of caches,

as was shown in �gure 3.13. Once the new cache is at the head of the list, all caches

with a copy of the line must be invalidated. The writing cache sends an Invalidate to
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the next cache in the list and waits for an Invalidate Reply from the cache, as shown

in �gure 3.14. The reply carries a pointer to the next cache in the list. This process

continues until all caches have been invalidated.

1. Read Miss to Directory

Memory/
Directory

Cache2
HeadCache1

RM

5. New cache now head of linked list   4. Prepend Reply to new head  

Memory/
Directory

Cache1
Head

Cache2
Old Head

Memory/
Directory

Cache1
Head

Cache2

PR

2. Read Miss Reply to reading cache 

Memory/
Directory

Cache1

RMR W/Data
and pointer to 
old head

Cache2
Head

3. Prepend to old head 

Memory/
Directory

Cache1
Head

P
Cache2

Old Head

Figure 3.13: SCI-INV: Read Miss to Valid Memory Line

Write Request

For a write to a cache line that is in a read-only state, the cache must obtain exclusive

ownership of the line. The cache �rst removes itself from the linked list by sending

a request to the caches pointed to by its forward and backward pointers. Once these

caches acknowledge the deletion of the writing cache from the doubly-linked list,

the writing cache sends a Write Miss to the directory, and the actions proceeds as

described above. Writes to a line in the Pending State must be blocked at the write

bu�er because the protocol does not distinguish between lines in a Reading orWriting

state.

In summary, the invalidations are done one at a time; each invalidate requires an
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Cache2Cache1
Head

Invalidate

4. Cache3 replies to invalidation 

Cache1
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Cache2Cache3 Cache3

Invalidate
 Reply
w/pointer

Figure 3.14: SCI-INV: Write Miss to Clean Line

acknowledgment before the next invalidation is performed. The protocol also requires

more operations to add a cache to the doubly-linked list. The doubly-linked list is used

to allow caches to remove themselves from the list without a request having to traverse

the entire length of the list. See the SCI-INV speci�cations [42] and Thapar's Ph.D.

thesis [69] for a more detailed discussion and comparison of the distributed directory

invalidate-based protocols.

3.3.5 Summary

The invalidate-based protocols di�er in how invalidation is performed. In the CD-INV

protocol, the invalidates can be sent out in parallel since the directory entry contains

all the necessary information. For the distributed directory protocols, the invalidates


ow down the linked list of caches; the length of the list determines the latency of

the invalidations. The DD-INV uses a pipelined technique; the invalidations 
ow

down the list of caches. The SCI-INV protocol invalidates the caches in the list one

at a time. The writing cache invalidates the next cache in the list and waits for an

acknowledgment before invalidating the subsequent cache in the list.

The source of data for a miss reply also di�ers among the invalidate-based pro-

tocols. The CD-INV protocol supplies the data from main memory if the memory

line is clean. If the line is dirty in another cache, the protocol uses cache-to-cache
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transfers to forward the data to the requesting cache, and if the request was a Read

Miss, the protocol also writes the data back to memory. For the DD-INV protocol,

cache-to-cache transfer is also used, but the line's data is not written back to mem-

ory. The cache at the head of the linked list always supplies the data on a miss. For

the SCI-INV protocol, the directory can supply the data until it is modi�ed by a

cache after which cache-to-cache transfers are used. For a detailed comparison of the

invalidate-based protocols see the work by Thapar [70, 69].

3.4 Update-Based Protocol (UP)

This section presents the details of the update-based protocols. Since the scalabil-

ity of the directory structures is still an open research topic, update-based protocols

are presented for both a fully-mapped centralized directory and a singly-linked dis-

tributed directory. Both update-based protocols presented require an order preserving

network. An order preserving network guarantees that messages between nodes are

received in the same order that they are sent.

3.4.1 Centralized Directory (CD-UP)

In this section, the details of the centralized directory update-based (CD-UP) protocol

are presented.

Cache and Memory Line States

In the CD-UP protocol, a cache line can be in one of �ve states:

� Invalid - the cache's copy of the line is not valid,

� Pending - the cache has issued a miss and is waiting for a reply,

� Shared - the line is shared by multiple caches - writes must update other cached

copies of the line and memory,

� Replacing - the cache's copy is being replaced, or
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� Exclusive - the cache's copy is the only copy of the memory line (cache is owner

of line).

A memory line can be in one of four states:

� Absent - no cached copies of the line exist,

� Shared - at least one cache has a copy of the line - memory is consistent,

� Exclusive - one cache has a copy of the line - memory is not consistent, or

� Pending - the directory is awaiting a write back for the memory line.

Table 3.1 describes the protocol messages. The �rst column of the table gives the

message name, and the next two columns indicate the source and destination for each

message. The source (Src) and destination (Dst) may be a processor (P), a cache

(C) or a directory (D). The next column speci�es if the message is a request (Req)

or reply (Rep). The message type determines which network channel the message

will traverse. The next column gives a brief description of the message, and the data

column speci�es what data type, a word or line, is sent with the message. Finally, the

last column speci�es what actions are taken by the destination node. These actions

may include incrementing and decrementing the pending write counter (PWC) and

the pending update counter (PUC). These counters are used to determine when all

issued writes have been performed. Other actions include writing the data value (V)

from the message into the cache line data (CD) or memory line data (MD) at the

speci�ed cache line o�sets (O) and setting or clearing the directory (DIR) pointers.

A Stall indicates that the processor is stalled until the proper reply is received by the

cache, and Block indicates that the write is not processed, and it is not retired from

the write bu�er. A pending bit (PB) is used to control the writing of data into the

cache line for certain conditions. The pending bits are identical to the valid bits used

in the invalidate-based protocols [69].

Figure 3.15 shows the state transition diagrams for cache and memory lines. The

diagrams show the state changes for each received message and the resulting messages

generated, if any.
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Message Src Dst Type Description Data Destination Actions

RD P C Processor read If Pending & PB(O) = F Then Stall

WR P C Processor write Word If Shared & PB(O) = T Then Stall
Else CD(O) = V

If Invalid Then PWC += 1
If Pending Then PB(O) = T
If Shared Then PWC += 1, PB(O) = T

R P C Line replacement If ForAny O: PB(O) = T Then Stall

FENCE P Stall until writes performed Stall until PWC = PUC = O

RM C D Req Read miss DIR(Src) = T

WM C D Req Write miss Word MD(O) = V, DIR(Src) = T

WW C D Req Write word to directory Word MD(O) = V

RL C D Req Replace line DIR(Src) = F

RLD C D Req Replace line with data Line MD = V, DIR(Src) = F

SR D or C C Req Shared miss reply Line PWC -= 1, PUC += U
with update count (U) Forall O: If PB(O) = F Then CD(O) = V

Else PB(O) = F, send WW with CD(O)

ER D C Rep Exclusive miss reply Line PWC -= 1
Forall O: If PB(O) = F Then D(O) = V

Else PB(O) = F

WB D C Req Write back line to directory

WBU D C Req Write back line to directory CD(O) = V
with data update

UW D C Req Update word to cache(s) Word If PB(O) = F Then CD(O) = V

RA D C Req Replacement ack

WA D C Req Write ack PWC -= 1, PUC += U, PB(O) = F
with update count (U)

UA C C Rep Update ack PUC -= 1

LR C D Rep Line already replaced
LRD C D Rep Line already replaced/Data Word

UL C D Rep Write back of line Line MD = V

RMB D C Req Bounce RM to cache Resend RM

WMB D C Req Bounce WM to cache Resend WM, V = CD(O)

WWB D C Req Bounce WW to cache Resend WW, V = CD(O)
LRB D C Req Bounce LR to cache Resend LR

LRDB D C Req Bounce LRD to cache Word Resend LRD

UWB C D Req Bounce UW to directory Resend UW, V = MD(O)

WBB C D Req Bounce WB to directory Resend WB

WBUB C D Req Bounce WBU to directory Resend WBU, V = MD(O)

Legend

P Processor

C Cache

D Directory

Req Request packet

Rep Reply packet
PB(O) Pending bit for o�set O

CD(O) Cache data for o�set O

MD(O) Memory data for o�set 0

PWC Pending write counter

PUC Pending update counter

DIR(i) Directory pointer for node i

PB(O) Pending bit for o�set O

U Pending update ack count

V Data value in packet

Table 3.1: CD-UP: Description of Messages
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Figure 3.15: CD-UP: Cache and Memory Line State Diagrams
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The next few sections describe the actions taken by the CD-UP protocol for typ-

ical read misses, write misses, write hits and line replacements. Protocol races and

exception handling are also discussed.

Read Miss

For a read miss, the requesting cache sends a Read Miss to the directory, and the

state of the cache line is set to Pending, as shown in �gure 3.16. When the directory

receives the miss request, the directory can reply with the line's data if the memory

line state is Absent or Shared. If the memory line state is Absent, then the directory

responds with an Exclusive Reply (ER) and the memory line state is set to Exclusive.

If the memory line state is Shared, then the reply is a Shared Reply (SR). After the

cache receives the reply, the cache line state is set to Exclusive for an Exclusive Reply

or Shared for a Shared Reply.

If the memory line state is Exclusive on a Read Miss, the line's data must be

fetched from the owning cache, as shown in �gure 3.17. Once the requesting cache

receives the line's data, the cache line state is set to Shared, and when the memory

receives the Update Line with the line's data, the memory line state is also set to

Shared and memory is updated.

Write Miss

The actions for a write miss to a memory line in the Absent state are identical to a

read miss except that the cache sends a Write Miss to the directory. If the memory

line is in the Exclusive state, the actions are similar to a Read Miss except that the

directory sends a Write Back Update (WBU) to the owning cache. The Write Back

Update contains the write value. This allows the owning cache to update its copy of

the line before sending a Shared Reply to the requesting cache and an Update Line

to the directory. After the transaction is complete, the states of both cache lines and

the memory line are Shared.

If the memory line is in the Shared state on a write miss, all other copies of the

line must be updated, as shown in �gure 3.18. The writing cache sends a Write
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Figure 3.16: CD-UP: Read Miss to Absent Memory Line
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Figure 3.17: CD-UP: Read Miss to Exclusive Memory Line
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Figure 3.18: CD-UP: Write Miss to Shared Memory Line

Miss along with the new value to the directory, increments the pending write counter

(PWC) and sets the cache line state to Pending. Once the directory receives the miss

request, it sends an Update Word with the new value to all caches that have a copy

of the line, and the directory also sends a Shared Reply with a count of the updates

sent and the line's data to the writing cache. When the writing cache receives the

reply, it decrements the pending write counter and adds the number of updates sent

to the pending update counter (PUC). The updated caches receive the Update Word,

update their copy of the line and send an Update Ack to the writing cache. Upon

receipt of an Update Ack, the writing cache decrements the pending update counter.

When both the pending write and pending update counters are zero, all previously

issued writes have been performed.

Write Hit

Write hits to a cache line in the Shared state must also update all other cached copies

of the line, as shown in �gure 3.19. The resulting actions are similar to that of a

Write Miss. The only di�erence is that the directory responds to the writing cache

with a Write Ack rather than a Shared Reply since the writing cache already has a

copy of the line.
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Figure 3.19: CD-UP: Write Hit to Shared Memory Line

The CD-UP protocol limits the number of outstanding updates per o�set to one

per cache. When the processor issues a write to a cache line in the Shared state, the

update-pending bit for the o�set (PB(O)) is set. When the write is acknowledged by

a Write Ack, the bit is cleared. Any write to a cache line in the Shared state with

the corresponding update-pending bit set is blocked. If the line is in the Pending

state, the value is written into the cache line and the corresponding update-pending

bit is set, but unlike writes to a line in the Shared state, writes are not blocked if the

update-pending bit is already set. They overwrite any previous value. If the pending

miss reply is a Shared Reply, then all o�sets with the update-pending bit set are sent

to the directory in a Write Word message. If the miss reply is an Exclusive Reply,

then no updates are required. In both cases, the update-pending bits are cleared after

the reply is received.

This restriction on outstanding updates should have little, if any impact of the

performance of the protocols. If the writes are closely spaced, then the compiler

may optimize these updates since they are actually a write after write hazard [41].

Any synchronization point between the writes will be blocked until the previous writes

complete. If multiplewrites to the same o�set occurs, then the write grouping schemes

that will be described in chapter 5 should be able to group the writes.
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Line Replacement

Line replacement in the CD-UP protocol is straightforward, as shown in �gure 3.20.

The cache sends a Replace Line (RL) to the directory. The directory clears the

cache's bit pointer in the directory entry for the memory line and acknowledges the

replacement with a Replacement Ack (RA). If the cache line was in the Exclusive state

and the line had been modi�ed, then the cache must send the line's data along with

the replacement request to the directory.

Memory/
Directory

(S|A)

Cache
(I)

3. Memory line state now Absent
    if no other cache has a copy
    of the line. Otherwise, the
    state remains Shared

1. Replace to Directory

Memory/
Directory

(S)

Cache
(R)

RL

2. Replace Ack to cache

Memory/
Directory

(S)

Cache
(R)

RA

Figure 3.20: CD-UP: Replacing Cache Line in the Shared State

Protocol Races

There are several types of protocol races in the CD-UP protocol. The �rst type occurs

when the directory receives a request to a memory line in the Pending state. These

requests include Read Miss, Write Miss and Write Word. These races may occur

when a cache has sent a miss request for a line that is currently owned by another

cache and either the requesting cache initiates a Write Word or a third cache sends a

miss request for the line before the Update Line from the owning cache is received by

the directory. Figure 3.21 shows how a Write Word race might occur. For all three

request types, the directory can bounce the request back to the sender to be retried.

The second type of protocol race is a request to a cache line in the Pending state.

These requests include Update Word and Write Back. The Update Word race may
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Figure 3.21: CD-UP: Race: Write Word to Pending Memory Line
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Figure 3.22: CD-UP: Race: Update Word to Pending Cache Line

occur if a cache sends a miss request to the directory, and if before the cache receives

the miss reply, the cache receives an Update Word from a write by another cache,

as shown in �gure 3.22. The Update Word may reach the pending cache before the

Shared Reply since the messages follow di�erent paths: the Update Word from the

directory and the miss reply from another cache. In this case, the cache must bounce

the Update Word back to the directory. When the directory receives the bounced

update, it resends the Update Word with the latest value of the memory word. Thus,

a cache may not see all updated values if there are multiple writes to the same address

without any synchronization events controlling the writes, but it will see the latest

global value. The directory acts as the write serialization point.

The Write Back race may occur since an Exclusive Reply to a cache is a reply

and the subsequentWrite Back is a request; and therefore, they travel down di�erent

networks and may reach the cache out of order, as shown in �gure 3.23. In this case,

the Write Back is bounced back to the directory to be retried.
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Figure 3.23: CD-UP: Race: Write Back to Pending Cache Line
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Message Src Dst Description Type

RL C D Replace line OD

UWB C D Bounce UW to directory OD

RM C D Read miss OI

WM C D Write miss OI

WW C D Write word OI

WB D C Write back line OI

WBU D C Write back line w/update OI

SR D or C C Shared miss reply OI

LR C D Line replaced OI

RMB D C Bounce RM to cache OI

WMB D C Bounce WM to cache OI

WWB D C Bounce WW to cache OI

WBB C D Bounce WB to directory OI

WBUB C D Bounce WB to directory OI

LRB D C Bounce LR to cache OI

Table 3.2: CD-UP: Messages That May Deadlock

The �nal type of race is a request to a cache line in the Replacing state. These

requests include Update Word and Write Backs. For the Update Word request, the

cache can simply acknowledge the update. For theWrite Back requests, the cache line

must have been in the Exclusive state previously and just sent a Replace Line request

to the directory. In this case, the cache sends a Line Replaced (a Line Replaced

Data with the update data if the request was a Write Back Update) back to the

directory. When the directory receives the Line Replaced, it will have already received

the Replace Line request, and memory's data will be valid. The directory may now

respond to the initial miss request with memory's current data.

Exceptions

As described in section 3.2, the protocol must be able to break request-request dead-

locks. Table 3.2 shows the request messages that may generate another request.

These messages can be divided into two classes. The �rst class of messages are essen-

tially order-independent (OI). They do not rely on the order preserving nature of the

network and, therefore, do not introduce any additional complexity to the protocols

if they are bounced back to the sender as an exception. For example, the Read Miss

message is OI. Once a cache sends a Read Miss to the directory, the cache will not

generate any other messages relating to this line, and until the directory receives the
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Figure 3.24: CD-UP: Race: Line Replaced to Pending Memory Line

miss request, it will not send the cache any message pertaining to the line. The Read

Miss message can take any path from the cache to the directory including being sent

back to the cache as an exception without introducing any new complexities to the

protocol.

Of the order-dependent (OD) messages, the exception of a Replace Line message

may cause a race condition, as shown in �gure 3.24. In this case, a Line Replaced

may reach the directory before the Replace Line. The directory must bounce the

Line Replaced back to the replacing cache. This action is repeated until the directory

receives the Replace Line message and the line's current data. Now when the Line

Replaced is received, the directory may respond to the pending miss request.

An Update Word Bounce may also result in an exception, but since an Update

Word Bounce does not carry data (it only carries a promise of an update), it can take
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an arbitrary path between the cache and directory without introducing any additional

complexities to the protocol. Once the directory is able to process the Update Word

Bounce, it sends an Update Word with the memory's current data. If the destination

of the update no longer has a copy of the line, the directory acknowledges the writing

cache directly.

3.4.2 Distributed Directory (DD-UP)

In this section, the details of the singly-linked distributed directory update-based

protocol (DD-UP) are presented. The DD-UP is based on the directory structure

and singly-linked lists of the DD-INV protocol [69, 70].

Cache and Memory Line States

In the DD-UP protocol, a cache line may be in one of 12 states:

� Invalid - the cache's copy of the line is not valid,

� Pending - the cache has issued a miss and is waiting for a reply,

� Exclusive - the cache's copy is the only copy of the line (cache is owner of line),

� Shared - the line is shared by multiple caches and the cache is neither the head

nor the tail of the list - writes must update other cached copies of the line,

� Shared-Head - the line is shared by multiple caches and the cache is the head of

the list - writes must update other cached copies of the line,

� Shared-Tail - the line is shared by multiple caches and the cache is the tail of

the list - writes must update other cached copies of the line,

� Replacing-Head - the cache's copy, which is the head of the list, is being replaced,

� Replacing - the cache's copy, which is neither the head nor the tail of the list, is

being replaced,

� Replacing-Tail - the cache's copy, which is the tail of the list, is being replaced,
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� Replacing-Exclusive - the cache's copy, which is the only copy of the line, is being

replaced,

� Exclusive-Replacing - the cache's copy was the head of the list and the next cache

in the list, which was the tail of the list, is replacing itself. The head of the list

will contain the exclusive copy of the line once the replacement is complete, or

� Shared-Head-Replacing - the cache's copy is the head of the list and a cache in

the list is replacing itself.

A memory line may be in one of 3 states:

� Absent - no cached copies of the line exist,

� Present - at least one cache has a copy of the memory line - memory is not

consistent, or

� Replacing - a cache in the list is removing itself from the list - memory is not

consistent.

Table 3.3 gives a brief description of the protocol messages. The columns have

the same meaning as in the CD-UP protocol. The DD-UP protocol can store (Store)

requests to cache lines in the Pending state in the pointer �eld of the cache line. When

the appropriate reply is received and the cache line state is changed, the pending signal

is processed (Process-Stored). The state Shared-States implies any of the three shared

states: Shared-Head, Shared or Shared-Tail. The Aux �eld is an additional pointer

�eld used by some of the message types. Figure 3.25 shows the state transition

diagrams for cache and memory lines.

The next few sections describe the actions taken by the DD-UP protocol for typ-

ical read misses, write misses, write hits and line replacements. Protocol races and

exception handling are also discussed.

Read Miss

For a read miss, the cache sends a Read Miss request to the directory. If the state of

the memory line is Absent, then the directory replies to the miss with a Miss Reply
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Message Src Dst Type Description Data Destination Actions

RD P C Processor read If Pending & PB(O) = F Then Stall

WR P C Processor write Word If SharedStates & PB(O) = T Then Stall
Else CD(O) = V

If Invalid Then PWC += 1
If Pending Then PB(O) = T
If Shared-States Then PWC += 1, PB(O) = T

R P C Req Line replacement If ForAny O: PB(O) = T Then Stall Else Aux = Dir

FENCE P C Stall until writes performed Stall until PWC = PUC = O

RM C D Req Read miss Dir = Src

WM C D Req Write miss Word Dir = Src, Aux = Src

UWM C D Req Update word memory Word Aux = Src

UW D or C C Req Update word Word If PB(O) = F Then CD(O) = V
If Src = Aux Then PB(O) = F

RE C D Req Replace exclusive line

RH C D Req Replace shared-head line Dir = Aux

R C D Req Replace shared line
D or C C Req Replace shared line If Dir = Src Then Dir = Aux

If Dir = Aux Then Dst is replacing cache

RT C D Req Replace shared-tail line
D or C C Req Replace shared-tail line

HRF C C Req Head replace 
ush

RC C C Req Replace complete

MRF D C Req Memory replace 
ush
RF C C Req Replace 
ush

MR C C Req Miss reply Line PWC -= 1, PUC += U, DIR = Src
with update count (U) Forall O: If PB(O) = F Then CD(O) = V
(U = 0,1) Else send UW with CD(O), PB(O) = F

MRM D C Rep Memory miss reply Line PWC -= 1
Forall O: If PB(O) = F Then CD(O) = V Else PB(O) = F

RMF D C Req Read miss forward

WMF D C Req Write miss forward CD(O) = V
with data update

RA D C Req Replace ack

UA C C Rep Update ack PUC -= 1, PB(O) = F

RMB D C Req Bounce RM to cache Resend RM

WMB D C Req Bounce WM to cache Resend WM, V = CD(O)

UWB D C Req Bounce UW to cache Resend UW, V = CD(O)
C D Req Bounce UW to directory Resend UW

RHB D C Req Bounce RH to cache Resend RH

REB D C Req Bounce RE to cache Resend RE
RTB D C Req Bounce RT to cache Resend RT

RB D C Req Bounce R to cache Resend R

Legend

P Processor
C Cache

D Directory

Req Request packet

Rep Reply packet
PB(O) Pending bit for o�set O

CD(O) Cache data for o�set O

MD(O) Memory data for o�set 0

PWC Pending write counter

PUC Pending update counter

DIR Directory pointer

PB(O) Pending bit for o�set O

U Pending update ack count

V Data value in packet

Table 3.3: DD-UP: Description of Messages
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Figure 3.25: DD-UP: Cache and Memory Line State Diagrams
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Figure 3.27: DD-UP: Read Miss to Present Memory Line

Memory (MRM). The state of the memory line is set to Present, and the cache line

state is set to Exclusive, as shown in �gure 3.26.

If the memory line state is Present, then the data must be fetched from the cache

at the head of the list, and the requesting cache must be added to the head of the

list, as shown in �gure 3.27. The directory responds to the miss request by sending

a Read Miss Forward (RMF) to the cache at the head of the list, and the directory

pointer is changed to point to the requesting cache, the new head of the list. The old

head of the list responds to the Read Miss Forward by sending a Miss Reply (MR)

with the line's data to the requesting cache. After receiving the reply, the requesting

cache sets its directory pointer to point to the cache that sent the reply.
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Figure 3.28: DD-UP: Write Miss to Present Memory Line

Write Miss

The actions for a write miss are identical to a read miss if the memory line state is

Absent. If the memory line state is Present, then the directory sends a Write Miss

Forward (WMF) and the new data value to the old head of the list, as shown in

�gure 3.28. The old head of the list updates its copy of the line, sends a Miss Reply

along with the line's data to the requesting cache and sends an Update Word down

the list of caches. The cache at the end of the list acknowledges the update, and the

writing cache becomes the head of the list.

Write Hit

On a write hit to a cache line in any of the three shared states, Shared-Head, Shared

or Shared-Tail, the other caches in the list must be updated. If the writing cache is

at the head of the list, it can simply send an Update Word to the next cache in the
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Figure 3.29: DD-UP: Write Hit to Cache Line in Shared Head State

list, as shown in �gure 3.29. This cache updates its copy and forwards the Update

Word down the list. The cache at the end of the list acknowledges the update.

If the cache is not the head of the list, the write value must be forwarded to the

head of the list. To do this, the writing cache sends an Update Word Memory (UWM)

to the directory, as shown in �gure 3.30. The directory forwards it to the head of

the list, and an Update Word is propagated down the list. The cache at the end of

the list acknowledges the update. Note that the writing cache will receive the update

request, but must forward the update on to the next cache in the list.

As in the CD-UP protocol, the DD-UP protocol limits the number of outstanding

updates per o�set to one per cache. When a cache modi�es a cache line in the Shared

or Shared Tail states, the pending bit for the o�set(PB(O)) is set. When the cache
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Figure 3.30: DD-UP: Write Hit from Cache Line in Shared State
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receives its own Update Word, the bit is cleared. Writes to words in shared lines with

the corresponding pending bit set are blocked and updates to these words do not

update the cache line, but the update is still forwarded to the next cache in the list.

If there are multiple writes to the same word by di�erent processors, each processor

may not see all values, but the �nal value will be consistent. The order that the

updates reach the cache at the head of the list determines the total ordering of the

writes; the head of the list acts as a write serialization point.

Line Replacement

Line replacement is much more di�cult in the DD-UP protocol than in the CD-UP

protocol. In the CD-UP protocol, the message path from the directory to each cache

is �xed. But in the DD-UP protocol, the path from the directory to a given cache

is dependent on the current structure of the directory list for the line. As caches are

added and deleted from this list, the structure of the list is altered. These alterations

change the path of messages sent between the directory and caches and between

caches.

To make line replacement possible without a signi�cantly more complex protocol, a

new state, Replacing, was added to the possible states of a memory line. If a memory

line is in this state, all requests to the line are bounced back to the requester. This

new state prevents new messages from attempting to traverse the list while it is being

altered. Messages currently traversing the list are 
ushed out with special 
ushing

messages, which will be described in the next few paragraphs.

For a cache line in the Exclusive state, line replacement is identical to the CD-UP

protocol. The cache sends a Replace Line message to the directory and the directory

responds with a Replace Ack.

If the cache line is in the Shared Head state, the cache sends a Replace Head (RH)

message to the directory, as shown in �gure 3.31. The directory changes the memory

line state to Replacing (R) and replies to the replacing cache with a Memory Replace

Flush (MRF). The replacing cache then sends a Head Replace Flush (HRF) to the

next cache in the list. This cache now becomes the head of the list, or if it is the tail of

the list, the state of the cache line state is set to Exclusive. This cache sends a Replace
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Figure 3.31: DD-UP: Replacing Cache Line in Shared Head State

Ack (RA) back to the directory. This acknowledgment indicates that the replacement

is complete, and the memory line state is set back to Present. The Memory Replace

Flush and the Head Replace Flush are used to 
ush any pending messages that might

be traversing the list.

To replace a cache line in the Shared state, the cache sends a Replace message to

the directory, as shown in �gure 3.32. The directory sets the memory line state to

Replacing and forwards the Replace to the head of the list. The cache at the head of

the list changes its cache line state to Shared Head Replacing (SHR). This new state

prevents this cache from generating any new updates while the list is being altered.

Each cache in turn forwards the Replace request down the list. The request speci�es

the replacing cache and the next cache in the list after the replacing cache. When

a cache receives the request, it checks if its directory pointer points to the replacing
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Figure 3.32: DD-UP: Replacing Cache Line in Shared State

cache. If so, it sets its directory pointer to point to the cache following the replacing

cache. When the replacing cache receives its own request, it sends a Replace Flush

(RF) to the next cache in the list, and sets its cache line state to Invalid. The Replace

and Replace Flush messages have 
ushed out any requests that were 
owing down

the list. Once the next cache in the list receives the Replace Flush, it sends a Replace

Complete to the head of the list. The cache at the head of the list changes its cache

line state back to Shared Head and sends a Replace Ack to the directory. The memory

line state is then changed back to Present.

The actions to replace a cache line in the Shared Tail state are almost identical to

the replacement of a Shared line, but since the replacing cache is at the end of the

list, it does not need to 
ush the next section of the list. The replacing cache can

send the Replace Complete to the cache at the head of the list once it receives its own
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Figure 3.33: DD-UP: Race: Update Word to Pending Cache Line

replace request.

Protocol Races

There are two types of protocol races in the DD-UP protocol. The �rst type is a

request to a memory line in the Replacing state. In this case, the directory can

bounce the request back to the sender to be retried. The second type is an Update

Word to a cache line in the Pending state, as shown in �gure 3.33. In this case,

the Update Word can be bounced back to the directory to be retried. The Update

Word Bounce still carries the data value, but this does not create an update ordering

problem since the update order is determined by the order that the Update Words

reach the cache at the head of the list. The bounced update has yet to reach the head

of the list and, therefore, is not yet an ordered update.
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Message Src Dst Description Type

UW C C Update Word OD

RM C D Read Miss OI

WM C D Write Miss OI

UWM C D Update word to directory OI

RE C D Replace Exclusive OI

RH C D Replace Shared-Head OI

R C D Replace Shared OI

RT C D Replace Shared-Tail OI

UW D C Update Word OI

R D C Replace Shared OI

RT D C Replace Shared-Tail OI

MRF D C Memory Replace Flush OI

BOUNCE D C All Bounced messages OI

RF C C Replace Flush OI

Table 3.4: DD-UP: Messages That May Deadlock

Exceptions

As described in section 3.2, the protocol must be able to avoid protocol level deadlock.

Table 3.4 shows the request messages that may generate another request in the DD-

UP protocol. As with the CD-UP protocol, the order independent (OI) requests can

be sent back to the source as an exception without adding any complexity to the

protocol.

The Update Word message, the only order-dependent message, may change the

order of updates 
owing down the list. For example, �gure 3.34 shows two updates

from di�erent processors 
owing between two caches. The �rst update results in an

exception and is sent back to the sender. The second update reaches the destination

cache and updates the cache line. Once the sending cache receives the excepted

update, it must resend it with the latest value, which is the value from the second

update. The destination cache receives this update and updates its cache line. Now

both caches are consistent with the value from the second update, although the second

cache never saw the update of the �rst value.
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3.5 Protocol Veri�cation

An exhaustive veri�cation tool called Mur' [19, 20] was used to verify the update-

based protocols. To verify a protocol using Mur', a description of the system and a

behavioral description of the protocol is required. From this, Mur' builds a system

state and attempts to traverse it by applying rules from the behavioral description of

the protocol. Error statements and invariants are used to detect errors.

For example, �gure 3.35 shows the architectural model on which the update-

based protocols were veri�ed. The system consists of three caches and one direc-

tory/memory. The caches each have one request and one reply bu�er, and the direc-

tory has four request bu�ers and one reply bu�er. Each network, request and reply,

consists of ordered paths between each cache and the directory, and it also includes

ordered paths between each pair of caches. The memory consists of a single line with

a one-bit data word. The single line is su�cient since protocol actions do not interact

between lines. The single, one-bit data word is also su�cient since if there is a case

in which a \wrong" value overwrites a \correct" value, then the exhaustive nature of

the tool will �nd the same case for the two values used for the data word.

Cache

Processor

Request  Reply

Cache

Processor

Request  Reply

Order Preserving Network

Directory/Memory
Request  Reply

Cache

Processor

Request  Reply

Figure 3.35: Veri�cation Model
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The system state created by Mur' consists of a concatenation of all the state bits

in the system. This state includes the bits in the cache and memory line data and

state information and the message data in the network bu�ers. In this case, the

maximum number of state would be 2state�bits states, a signi�cant number of states.

The actual number of states traversed is dependent on the behavioral rules of the

protocol. For the update-based protocols examined, this number quickly consumes

all the memory available for the veri�cation since Mur' must remember which states

have been visited. There are two techniques to reduce the number of states traversed

and, therefore, Mur''s memory requirements.

The �rst technique uses symmetry to eliminate redundant states [43, 44]. Symme-

try in a system allows Mur' to �nd states that are equivalent in their current and

future behavior with respect to error checking. During veri�cation, only one member

of each equivalence class needs to be examined. This technique is able to signi�cantly

reduce the total number of states examined. Using symmetry does not a�ect the

correctness or coverage of the protocol veri�cation.

The second technique limits the number of concurrent actions. Since Mur' is

an exhaustive veri�cation tool, every possible combination of events must be veri�ed.

Therefore, the more active events, the larger number of traversed states. In the veri�-

cation of the update-based protocols, the number of outstanding updates was limited

to one per cache word since the actual protocol limits the number of outstanding

updates per word to one.

Overall, the veri�cation tool was useful in verifying the correctness of the proto-

cols. Errors were detected very quickly, but the state explosion problem limited the

size and scope of the veri�cation. As discussed above, the only limitation of the veri-

�cation that might a�ect correctness was the limited number of outstanding updates,

but the combination of Mur' veri�cation, running simulation with the update-based

protocols and hand veri�cation have produced correct update-based protocols with a

high con�dence level.
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3.6 Summary

In this chapter, the actions required for both invalidate-based and update-based cache

coherence protocols were discussed. Table 3.5 summarizes the important characteris-

tics of the protocols. The invalidate-based protocols require a writing cache to obtain

exclusive ownership of a line before it may be modi�ed, but the update-based pro-

tocols allow multiple readers and writers of any given memory line. The centralized

directory protocols can use the structure of the directory to send invalidations or

updates in parallel. The distributed directory protocols were forced to send the in-

validate and updates down the list of cache; the longer the list, the longer the latency

of the operation. The centralized directory protocols updated memory3. The update

of memory allows subsequent misses to be serviced by the directory. The distributed

directory protocols do not update memory and, therefore, the data must always be

fetched from the cache at the head of the list.

Protocol Invalidates/Updates Memory Update Source of Miss Data

CD-UP Parallel Updates Always Memory or Cache
DD-UP Pipelined Updates Never Cache

CD-INV Parallel Invalidates For read miss Memory or Cache
SCI-INV Sequential Invalidates Never Cache
DD-INV Pipelined Invalidates Never Cache

Table 3.5: Protocol Summary

The remainder of this dissertation will focus on the performance di�erences be-

tween these �ve protocols.

3All protocols update memory if a cache replaces the last cached copy of a memory line and

memory's copy is not consistent.



Chapter 4

Simulation Methodology

In order to compare the performance of the various cache coherence protocols, a

simulation environment must be built. This environment must include a multipro-

cessor architecture model, a set of applications and the underlying event simulator.

This chapter describes these components in detail. Section 4.1 describes the archi-

tectural models used, and section 4.2 describes the simulation environment. Finally,

section 4.3 describes the applications simulated.

4.1 System Architecture

The simulated architecture consists of a 64 node shared-memory multiprocessor. The

nodes arranged in an 8 by 8 mesh as shown in �gure 4.1. Each node consists of a

processor and memory element (PME) connected to its four nearest neighbors through

a set of network queues. Although the �gure shows only one network, the nodes are

actually connected together by both a reply and a request network to avoid protocol

level deadlock.

The PME consists of a processor, cache, memory, cache coherence directory and

an interface to the network, as shown in �gure 4.2. The elements of a PME are

connected together through a reply and request bus. A separate reply and request

bus and network are required to avoid protocol deadlock, as described in section 3.2.

The reply network can also be used as the exception network.

77



78 CHAPTER 4. SIMULATION METHODOLOGY

...

...

...

...

...

...

..................

PME

Node

64 nodes arranged in an 
8x8 mesh interconnect

Figure 4.1: Network Topology

... ...... ...

Cache

Superscalar
100 MHz Processor

... ...... ...

Directory/Memory

Request Bus - 100 MHz

... ...... ...

Request
Network

Reply
Network

Request         ReplyRequest         Reply

...

Write Buffer (16 Words)

128 Word Queues

Static RAM directory:
     10ns acces time
Sync DRAM memory:
     30ns access time
     60ns page miss penalty
     10ns per word

Cache:
  Fully associative 
  Infinite size
  10ns access time
  16 word lines

Reply Bus - 100 MHz

Figure 4.2: Processor/Memory Element



4.1. SYSTEM ARCHITECTURE 79

4.1.1 Processor Model

The processor is a 100 MHz superscalar processor that is assumed to be load/store

limited. The load/store limited model assumes that non-load/store instructions can

be executed in parallel with the load and store instructions. This assumption was

validated by compiling the inner loops of the applications studied on an Alpha su-

perscalar processor. The resulting cycle count did indicate that the processor tended

to be load/store limited.

4.1.2 Write Bu�er

A write bu�er is used to bu�er writes from the processor to the cache. The write

bu�er is 16 words deep and can accept a new write every cycle. The latency through

the write bu�er is one cycle.

4.1.3 Cache Model

The cache is lockup-free [61], and it is fully associative with in�nite size. An in�nitely

sized cache is used to separate the e�ects of a limited cache size and the actions

required by the cache coherence protocols. The cache has a single cycle access time

and a line size of 16 words. The cache controller uses a �xed priority scheme with

processor read requests having the highest priority followed by network requests and

replies, and then write bu�er requests.

4.1.4 Directory/Memory Model

Each directory/memory module consists of a single bank of 100 MHz synchronous

DRAMs supporting page mode operation. The SDRAMs have 30 ns access time for

a page access with a page miss penalty of an additional 60 ns. The directory consists

of a 10 ns access time SRAM for all protocols.
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4.1.5 Bus Model

The buses are a word wide and operate at 100 MHz. The bus arbitration uses a

�xed priority scheme for the three sources of requests for the bus: the cache, the

directory/memory and the network interface. The cache has the highest priority fol-

lowed by the directory/memory and then the network interface. The bus arbitration

requires one cycle.

4.1.6 Network Model

Each network link has a bandwidth of 400MB/s and the network latency through

a node is 8 cycles. The network queues are 8 and 20 words deep for the input

and output queues respectively. The output queue must be able to hold the largest

possible network packet (20 words) so that the multicast scheme presented at the end

of this section may be implemented.

The network is order preserving with static, wormhole routing [16] and multi-

cast. The network routing function requires one cycle. Multicast is only used by the

centralized directory protocols when there are multiple caches to update or invali-

date. Multicast is used to send identical packets to multiple targets. It is not a full

broadcast.

Topology

As noted in the beginning of this section, a 2 dimensional mesh topology was used.

There has been signi�cant work in the study of cache coherence protocols on other

types of network topologies. These include rings [10], hierarchy of buses [73], mul-

tistage interconnect networks [56, 5, 11]. A 2 dimensional mesh was chosen because

it o�ers the least message latency when interconnect locality and bisection band-

width are taken into account [15, 2]. Both the work by Thapar [69] and the DASH

project [53] also assume a 2 dimensional mesh.
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Multicast

The multicast scheme is very simple. Each multicast packet includes an extra two

words of header (64 bits) which are used as a bit vector to specify the targets of

the multicast packet. Each bit represents a target cache in the system. The routers

convert the bit vector into a list of destination ports of the router. When a message

has multiple output destination ports, it is only allowed to proceed if the entire packet

can be sent to each destination queue. Thus, the destination queues must be large

enough to hold the largest possible packet (20 words).

With this restriction, multicast aborts are not required since a packet is never

sent down a network channel unless the entire packet can be successfully sent down

all channels; the status signals from the queues can be used to determine if there

is enough room in the queues to hold the packet. Deadlock can be avoided since

the multicast packet does not acquire any output channels until all channels are

available. These restrictions may result in increased latency for multicast packets,

but they signi�cantly reduce the complexity of the multicast mechanism.

4.2 Simulation Environment

The Simple simulation environment [18, 60] was used to simulate the multiprocessor

architecture running the applications that will be described in section 4.3. Simple is

a lisp-based, object-oriented simulation environment.

4.2.1 Basic Objects

In this environment, each simulated object consists of a behavior description and a

set of ports. The objects communicate by sending messages across the port connec-

tions. For example, �gure 4.3 shows the two basic building block used to build the

multiprocessor models: a �rst-in, �rst-out (FIFO) queue object and an arbiter object.
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Figure 4.3: Basic Simulation Objects

FIFO

The FIFO queues are used to connect arbiters that perform actions on the data


owing through the system. The FIFO is a passive object because it only responds to

requests from arbiters. An arbiter may send data to a FIFO though its input port or

it may request data from a FIFO through its output port. The status ports indicate

the number of words in the FIFO. These status signals can be used to determine if

the FIFO is full or empty.

The behavior of a FIFO queue object is very simple. If the FIFO object receives

a data signal on the data input port, the data is inserted into the FIFO queue and

the status ports are updated. If the FIFO receives a request signal on the read port,

the next word in the FIFO is placed on the output data port and the status ports are

updated. The basic FIFO can send and receive data at one word per cycle, and the

minimum latency through the FIFO is two cycles.

Arbiter

The behavior of an arbiter is more complicated and consists of the following steps:
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1. Select input source FIFO

2. Read packet from output port of selected input FIFO

3. Process packet - Specialize this step to perform desired work

4. For each output packet generated

(a) Determine output destination(s)

(b) If input port of FIFO(s) is available, send data if not wait

The arbiter object is then specialized to perform the desired actions. For example,

to specialize an arbiter object to act as a cache, step 3, the process packet step, is

specialized to perform the following steps:

1. Read cache line state for speci�ed memory line

2. Process request for cache line in current state

(a) Access cache line data and update cache line state in parallel

(b) Generate any resulting protocol messages

The second step is then specialized for each cache coherence protocol.

The protocol speci�cations consist of a set of actions for each cache line state for all

possible protocols messages. For example, �gure 4.4 shows the protocol speci�cation

for an update message to a cache line in the Shared state for the CD-UP protocol

described in section 3.4.1

4.2.2 Node Object

Figure 4.5 shows how a node is constructed from the two basic objects. The cache

and directory/memory objects are arbiter objects specialized to perform the desired

protocols. The network router and bus are also arbiter objects specialized to perform

the desired routing function, and the network object is an arbiter specialized to con-

nect two nodes. The �gure only shows one network, but the actual model includes

two network. The two networks, a reply and request network, are required to avoid

protocol level deadlock, as described in sections 3.2.
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;;

;: SHARED cache line State

;;

(defmethod (CD-UP-CACHE :SHARED) (Cache-Line Operation Packet)

(case Operation

;;

;; Request was a :UPDATE-WORD

;;

(:UPDATE-WORD

;; Update cache line data with new word

(WRITE-HIT Cache-Line offset data)

;; Increment current simulation time (in cycles)

(WRITE-WORD-EVENTS 1)

;; Acknowledge Update

(SET-OPERATION Packet :UPDATE-ACK)

;; Destination node was Source of original Write

(SET-DESTINATION Packet (PACKET-SOURCE packet))

;; Set Packet Size

(SET-WORD-SIZE Packet ***Header-Size***)

;; Queue Packet to be sent no earlier than current time

(SEND-COHERENCE-SIGNAL packet))

Figure 4.4: Protocol Source Code Example
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The latencies through a network object, network router, bus router and FIFOs are

all two cycles. Therefore, the latency from network input to network output is eight

cycles, and the latency from the local bus to the network output is also eight cycles.
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4.3 Scienti�c Application Domain

To compare the performance of the cache coherence protocols, a set of applica-

tions must be speci�ed which represents an important domain for large scale shared-

memory multiprocessors. One such domain is the scienti�c and engineering domain.

The applications studied here include a simple, iterative partial di�erential equation

solver (PDE), a 3-D iterative partial di�erential equation solver using FFTs (3DFFT),

and three di�erent methods of factorizing a matrix into triangular matrices: a mul-

tifrontal solver (MF), sparse Cholesky factorization (SPCF), and LU decomposition.

Appendix A presents the details of the scienti�c applications. Two migratory appli-

cations (MP3D and TASK) are also examined, and appendix B presents the details

of these applications.

The applications can be classi�ed along the two dimensions as shown in �gure 4.6.

The y-axis is the number of consumers for each data block. This gives a measure of

general contention for each object and the maximumnumber of invalidates or updates

that might be needed when the data is modi�ed. The x-axis is the line utilization.

The line utilization is the percentage of each memory line that is modi�ed by the

producer. For example, if the data is a dense vector, the producer is likely to modify

all the words in the given line. This would result in a line utilization of 100%. If the

data is a structure, the producer might only modify a few words, which would result

in a low line utilization.

These measures give a good prediction of the performance of the cache coherence

protocols. The line utilization determines the e�ciency of the single word updates,

and the average number of consumers will determine the latency of updates and

invalidates for the di�erent protocols. The distributed directory protocols will be more

sensitive to this parameter since the latency of updates and invalidates is dependent

on the number of shared copies of the line.
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Chapters 5 and 6 discuss the performance of the protocols running the 5 scienti�c

applications, and section 7.2 describes the performance of the protocols for applica-

tions with migratory data.



Chapter 5

Enhancements to Update-Based

Protocols

This chapter motivates the need for two techniques to enhance the performance of

the update-based protocols. The �rst enhancement, a word synchronization scheme,

attempts to match the granularity of the data synchronization with the �ne-grain

data updates. The second enhancement, a write grouping scheme, attempts to groups

write updates to improve the e�ciency of the updates. Section 5.1 describes word

synchronization, and section 5.2 describes write grouping.

5.1 Word Synchronization

This section examines the interaction between data synchronization and cache coher-

ence protocols. First, block and word synchronization schemes are described. Next,

the actions required by each class of cache coherence protocols for both synchro-

nization schemes are examined. Finally, the simulation results are presented which

demonstrate that word synchronization always improves the performance of the �ve

scienti�c applications compared to the block synchronization case when update-based

protocols are used, but that the results vary for invalidate-based protocols.

88
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5.1.1 Block Synchronization

In shared-memory multiprocessors, data is often shared between a producer and one

or more consumers. To prevent the consumers from using stale or incorrect data,

the consumers must not access the data until the producer noti�es them that it is

available. Typically, such systems use a block synchronization scheme to synchronize

this production and consumption of data.

In such schemes, simple 
ags can be used to indicate that a given block of data

has been produced. For example, �gure 5.1 shows a timing line for an exchange of

data using a block synchronization scheme. First, the producer creates the data and

writes it to a shared bu�er. Next, the producer issues a fence instruction that stalls

the processor until all writes have been performed. Finally, the producer sets the

synchronization 
ag. The consumers, who have been waiting for the synchronization


ag to be set, see the 
ag set and begin consuming the data. Block synchronization

schemes may also use other synchronization methods such as barriers. The block

synchronization scheme examined in this dissertation assumes a release consistency

memory model [33], as was described in section 2.1.4.

Consumer(s)
ReadWait on Synchronization Event

Producer
Write FenceWork

Set
Sync

Figure 5.1: Block Synchronization

A block synchronization scheme has two basic disadvantages. First, the scheme re-

quires an expensive synchronization operation such as a 
ag or barrier to synchronize

the production and consumption of data. Second, the consumers are forced to wait

until the entire data block has been produced before they are able to begin consuming

the data. Both disadvantages are related to the block size of the data being produced.

If the block size is increased, the relative overhead, or cost, of the synchronization

event is reduced. But as the block size increases, the delay before consumers can

begin consuming the data also increases.
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5.1.2 Word Synchronization

An alternative to block synchronization is a word-based synchronization scheme. In

such a scheme, the synchronization information for each data word is combined with

the word. For example, �gure 5.2 shows how the timing line for the producer and

consumer interaction would be simpli�ed. In this case, the producer creates the data

and writes it to a shared bu�er. The consumers wait for the desired word to become

available and then consume it.

Consumer(s)
Read

Producer
Work/Write

Figure 5.2: Word Synchronization

Word synchronization has several advantages. First, the consumers are able to

consume each word as soon as it is available. This early consumption allows the

consumption time of the available data to overlap the production time of subsequent

words. Moreover, no expensive synchronization operation is required; thus, the pro-

ducer never needs to wait for the writes to be performed.

There have been several systems designed with word synchronization. These in-

clude but are not limited to Alewife [48], HEP [65], Tera [6] and MDP [17]. This

dissertation is the �rst to examine the performance of word synchronization on both

update-based and invalidate-based cache coherent multiprocessors. The work on

the Alewife system examines the implementation details of a word synchronization

scheme, and their work gives an excellent description of the software requirements for

such a scheme. In their work, they demonstrate that a word synchronization scheme

may improve the performance of the given applications running on an invalidate-based

cache coherent system. This dissertation does not contradict their �ndings, but rather

expands them to demonstrate the instability of the combination of invalidate-based

cache coherence protocols and word synchronization.
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5.1.3 Performance of Block Synchronization

This section reviews the performance of block synchronization schemes for both

invalidate-based and update-based cache coherent systems. As brie
y mentioned

in the last section, block synchronization uses a synchronization event, such as a 
ag,

to synchronize the production and consumption of data.

Figure 5.3 shows the type of diagram that will be used to demonstrate the work

required for the purpose of sharing a single data line for the two synchronization

schemes and the two di�erent classes of cache coherence protocols: invalidate-based

and update-based. The horizontal lines indicate required network transactions. These

transactions may go to the cache coherence directory, the memory or other caches

while traveling between the producer and consumer. The diagram shows only one

consumer, but there may be many. The vertical axis is time.

Invalidate-Based Protocols

Figure 5.3 shows the actions required for invalidate-based protocols using a block

synchronization scheme. After producing the data, the producer writes it to a shared

bu�er and waits for the writes to be performed. The writes are considered performed

when the producer's cache has obtained exclusive ownership of the line (all necessary

invalidations have been performed) and the data has been written into the cache.

The �gure assumes that the producer has already obtained exclusive ownership of

the data lines through write prefetching. After the writes have been performed, the

producer sets the synchronization 
ag. If the consumers have already read the 
ag,

then this write must invalidate the consumers' copies of the 
ag. The consumers,

who are still waiting for the 
ag to be set, will immediately reread the 
ag after it is

invalidated, but the producer cannot release the 
ag's line until all the invalidations

have been performed. Once the consumers see the 
ag set, they can begin reading

and consuming the data.
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Figure 5.3: Block Synchronization and Invalidate-Based Protocols

Figure 5.3 illustrates the cost of a block synchronization scheme using a simple


ag. The invalidation and reread of the 
ag by each consumer requires four network

transactions and the transfer of a line of data. The work to transfer the synchroniza-

tion information is more than the work to transfer one line of data. The size of the

data block could be increased to reduce this synchronization overhead, but the larger

block size also increases the waiting time of the consumers.

Update-Based Protocols

Figure 5.4a shows the actions required for update-based protocols. In this case, all of

the consumers have prefetched the synchronization 
ag and data block before the data

is written. When the producer writes the data, the consumers' caches are updated.

The producer must wait for the writes to be performed (all updates acknowledged)

before setting the synchronization 
ag, and this write of the 
ag will result in the

consumers' caches being updated. When consumers see the 
ag updated, they can
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Figure 5.4: Block Synchronization and Update-Based Protocols

begin using the data, which is already in their caches. Figure 5.4b shows the resulting

network transactions if a write-grouping scheme, as examined in the next section, is

used. In this case, the data updates are grouped into a larger, more e�cient update

packet.

As in the invalidate-based case, the block synchronization scheme has disadvan-

tages. First, the cost of the block synchronization operation is high. But the cost

is not in transferring the synchronization information itself, it is in waiting for the

updates to be performed (acknowledged). This synchronization scheme also forces

the consumers to wait until the synchronization point is reached before accessing the

data, but, unlike the invalidate-based case, the desired data is already in the con-

sumers' caches as a result of the earlier updates. The block synchronization scheme

does not allow the system to take advantage of these single word data updates.
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5.1.4 Performance of Word Synchronization

A word synchronization scheme can overcome many of the disadvantages of block

synchronization by combining the synchronization information with the data. Such

a scheme may be implemented in either hardware or software. In a hardware-based

scheme, a full/empty bit is associated with each memory word [65]. The full/empty

bit is set to full when the data word is written, and the word may be read only after

the bit is set to full. Alternatively, a software-based scheme may be used in which

an invalid code, such as NaN in a 
oating point application, is used to indicate an

empty word.

Figure 5.5 demonstrates how a producer and consumer interaction might be coded

for both block and word (using a software-based scheme) data synchronization. For

the block case, a simple 
ag, initialized to false, is used to synchronize the production

and consumption of data. For the word synchronization case, the data is initialized

to an invalid code. The consumer waits for each word to become valid and then

consume it. For iterative applications, the data must be set to an invalid code between

iterations.

There is little performance di�erence between hardware-based and software-based

word synchronization schemes. The main di�erence is in the clearing (or emptying) of

blocks of data. A hardware-based scheme may have facilities that allow a block to be

cleared in a single operation. This facility would allow the hardware-based scheme to

clear data in the initialization phase more quickly or, what is more important, clear

data between the iterations of iterative applications. Currently, all the applications

under study use a software-based scheme.

In the remainder of this section, the actions required by invalidate-based and

update-based protocols to implement a word synchronization scheme are described.

Invalidate-Based Protocols

By their very nature, invalidate-based protocols are not well matched to word syn-

chronization schemes. The protocols do not allow consumers to maintain copies of a

data line while a producer writes to the line. This results in a very unstable solution.
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Block:

Producer:
  shared a[Count];
  shared flag = false;

  /* Produce data */
  for (i = 0; i < Count; i++)
     a[i] = f();
  
  /* Wait for writes to complete */
  fence();
  
  /* Set Flag */
  flag = true;

Consumer:

  shared a[Count];

  /* Wait for flag */
  while (flag == false)

;

  /* Consume a[i] */
  for (i = 0; i < Count; i++)
    b[i] = f(a[i]);

Word:

Producer:
  shared a[Count] = INVALID;

  /* Produce Data */
  for (i = 0; i < Count; i++)
     a[i] = f();

Consumer:

  shared a[Count];

  /* Consume a[i] */
  for (i = 0; i < Count; i++) {
    /* Spin waiting for data */
    while (a[i] == INVALID)
        ;
    b[i] = f(a[i]);
  }

Figure 5.5: Code Examples for Block and Word Synchronization
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Figure 5.6: Word Synchronization and Invalidate-Based Protocols

Figure 5.6a shows the ideal timing diagram for invalidate-based protocols when a

word synchronization scheme is used. First, all the consumers read the initial word of

the data block. When the producer writes this word, all the consumers' copies must

be invalidated. But since the consumers are eagerly waiting for the data, they will

immediately reread the data line once it is invalidated. The invalidate-based protocols

studied in this dissertation allow the producer to continue writing into the cache line

while invalidations are pending. These non-blocking writes prevents the producer

from observing any write delay as the consumers read and reread the line. In the

ideal case, the invalidation latency is greater than the producer's write time for the

line. In this case, when consumers reread the line, they will �nd the line completely

written. The producer will not invalidate the line again; this gives consumers all the

time they need to consume the line's data for this ideal case.

However, �gure 5.6b demonstrates the problem with invalidate-based protocols
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and word synchronization schemes. In this case, consumers have reread the line after

the initial invalidation but before the producer has completed writing the data. Now

the producer is required to invalidate the consumers' copies of the line again, and the

consumers are forced to reread the line. The producer is able to release the line again

only after all the pending invalidations have been performed.

The relative timing of the writes and reads will have an enormous impact on

the performance of the system. If the writes occur in bursts, as they often do, the

producer will usually be able to produce many words of data between each reread by

the consumers. But the consumers, who will reread the line immediately after it is

invalidated, will only receive the data after all the consumers' copies of the line have

been invalidated. The consumers will then be able to consume data only until the

producer invalidates the line again, which may occur soon after the consumer receives

the data if the write rate is high.

The frequency with which these invalidations and rereads occur depends on two

characteristics of the applications. First, the probability that the producer �nishes

writing the line before the consumers attempt to reread it depends on the number

of words written to the line. This measure, known as the line utilization, was used

in section 4.3 to classify the application space. The other characteristic, also used

in section 4.3, is the number of consumers. The more consumers, the higher the

probability that consumers will interfere with the producer's writing of the data. The

performance results discussed in section 5.1.6 will demonstrate the impact of these

two application characteristics on the performance of the invalidate-based protocols

when word synchronization is used.

As described in chapter 2, data prefetch can be used in block synchronization

schemes to hide the latency of data accesses [55]. But in a word synchronization

scheme, prefetching may result in many more invalidations. The prefetched line itself

may be invalidated before it can be used, or the prefetched line may contain valid

data that may be consumed. The relative timing of the prefetch will determine which

of these two cases actually occurs. The performance gains of prefetching will be

examined in the section 5.1.5.
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Figure 5.7: Word Synchronization and Update-Based Protocols

Update-Based Protocols

The de�nition of update-based protocols o�er a better match to word synchroniza-

tion schemes. Unlike the invalidate-based protocols, update-based protocols allow

consumers to maintain a copy of the data line while a producer writes to the line.

Also, the producer's write of the data results in an update of all the consumers'

caches: a proactive distribution of data rather than a reactive approach as in the

invalidate-based protocols in which each consumer is responsible for refetching an

invalidated line.

For example, �gure 5.7a shows the actions required for update-based protocols

using a word synchronization scheme. First, all the consumers prefetch the desired

data lines. The prefetch allows the consumers to express an early interest in the

data so that when the data is written by the producer, the consumers' caches will be

updated. As the producer writes the data, the consumers can consume the data as
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soon as it arrives. Figure 5.7b shows the required network transactions when a write

grouping scheme is used.

Update-based protocols can also take advantage of word synchronization in an-

other way. Update-based protocols using a block synchronization scheme require

that updates be acknowledged before the synchronization 
ag is set, but in a word

synchronization scheme, no update acknowledgment is needed because the producer

is never required to wait for the updates to be performed. The elimination of the

acknowledgments has the largest impact on the distributed-directory update-based

(DD-UP) protocol described in chapter 3. In this protocol, the update acknowledg-

ment latency is dependent on the length of the list of caches with a copy of a given

line. Eliminating the requirement for update acknowledgments reduces the impact of

the length of this list on the performance of the DD-UP protocol.

The update-based protocols using write grouping o�er a muchmore robust solution

when word synchronization is used compared to the combination of word synchroniza-

tion and invalidate-based protocols. Data prefetch cannot degrade the performance of

the word synchronization scheme as with the invalidate-based protocols. The prefetch

can be issued as early as desired by the consumers. When the producer writes the

data, the consumers' caches are updated. The ine�ciency of these updates is ad-

dressed by the write grouping scheme described in section 5.2. Also, the relative

timing of the producer's writes and consumers' reads cannot a�ect performance as it

may when invalidate-based protocols are used. The amount of work is �xed regardless

of any variations in the timing of reads or writes.

5.1.5 Performance Impact of Data Prefetching

As described in chapter 2, software-controlled data prefetch has been shown to be

e�ective in hiding memory access latencies in applications using block synchroniza-

tion [55]. In this section, the performance impact of prefetching on the applications

using word synchronization is examined. Figure 5.8 shows the relative execution times

of the applications using data prefetch compared to the non-prefetching case for the

applications using word synchronization.
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Figure 5.8: Relative Execution Time of Applications Using Word Synchronization
and Prefetch Compared to the Non-Prefetch Case

Invalidate-Based Protocols

As discussed above, prefetch may improve the performance of an application by hid-

ing memory access latencies, or it may degrade performance by increasing consumer

interference and, therefore, create many more invalidations. Figure 5.8 indicates

that prefetch slightly improved the performance of the CD-INV protocol, but for the

DD-INV and SCI-INV protocols, prefetch may increase the number of invalidations

and, therefore, the total execution time. The performance degradation of prefetching

increases as the number of consumers in the applications increase. The CD-INV pro-

tocol is less sensitive to this e�ect since it is able to issue invalidates in parallel, but in

DD-INV and SCI-INV protocols, the invalidation latency is dependent on the length

of the sharing list, which is determined by the number of shared copies of each line.
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Overall, prefetch improved the performance of the CD-INV protocol, and it is bene-

�cial to the distributed directory protocols DD-INV and SCI-INV when the number

of consumers is small. Therefore, the applications studied will include prefetch when

word data synchronization is used because it improves the performance of the better

invalidate-based protocols, CD-INV and DD-INV, compared to the non-prefetching

case.

Update-Based Protocols

Unlike the invalidate-based protocols, prefetching with update-based protocols does

not adversely a�ect the performance of the word synchronization scheme. The data

prefetch allows the consumers to express an early interest in the data. The producer's

writes of this data will result in the consumers' caches being updated. Prefetch may

induce more updates, which might tend to congest the system, but, as described in

the next section, a write grouping scheme can be used to address this problem.

5.1.6 Performance of Word Synchronization Compared to

Block Synchronization

In this section, the performance of the word synchronization scheme is compared to

the block synchronization scheme. Figure 5.9 shows the relative performance of each

application for each cache coherence protocol. Table 5.1.6 gives the ratio of inval-

idates (updates) required for the word synchronization case compared to the block

synchronization case for the invalidate-based (update-based) protocols, and table 5.2

gives the relative change in total network tra�c for the word synchronization case

compared to the block synchronization case. This section will discuss the relevance

of these measures for both the invalidate-based and update-based protocols.

Invalidate-Based Protocols

For the invalidate-based protocols, the performance of the word synchronization

scheme varies. For the applications with small blocks and few consumers (PDE and
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Figure 5.9: Relative Execution Time of Word Synchronization Compared to Block
Synchronization

SPCF), the word synchronization scheme improved the performance of the applica-

tions compared to the block synchronization case. In these cases, the block synchro-

nization operation was costly, as each synchronization point protects only a small

block of data: 8 words for the PDE application and 4.9 words for the SPCF applica-

tion, as summarized in tables A.2 and A.3. Therefore, the elimination of this block

synchronization operation outweighed any extra invalidations or tra�c generated by

the word synchronization scheme. As illustrated in table 5.1.6, the word synchroniza-

tion has actually reduced the total number of invalidations compared to the block

case for these two applications. With the small block sizes of these applications, the

producer was able to write the full block before the consumers could reread the line

after the initial invalidation. The single invalidation per block essentially acted as a

synchronization or triggering event. The elimination of the explicit synchronization
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also signi�cantly reduced the network tra�c for these applications, as shown in ta-

ble 5.2. This reduction resulted in an improvement in execution times for the PDE

and SPCF applications, as shown in �gure 5.9.

Protocol CD-INV DD-INV SCI-INV CD-UP DD-UP

MF 10.7 7.08 4.07 0.98 0.84
PDE 0.93 0.93 0.93 1.85 1.91
SPCF 0.94 0.97 0.95 0.73 0.73
LU 4.42 3.67 3.42 0.40 0.41
3DFFT 1.00 1.08 1.14 1.38 1.38

Table 5.1: Ratio of Invalidation/Update Count for Word Compared to Block Syn-
chronization

Protocol CD-INV DD-INV SCI-INV CD-UP DD-UP

MF 0.81 0.81 0.80 0.84 0.84
PDE 0.67 0.55 0.51 0.87 1.09
SPCF 0.41 0.51 0.50 0.40 0.44
LU 1.24 1.32 1.59 0.34 0.71
3DFFT 0.98 1.07 0.99 0.84 1.13

Table 5.2: Ratio of Network Tra�c for Word Compared to Block Synchronization

As the line utilization increased, the consumer and producer interference also in-

creased. For the MF application, the number of invalidations was small for the block

synchronization case which indicates that the consumers were not always eagerly

consuming the data. Word synchronization increased the number of invalidations

signi�cantly, but the overall tra�c was reduced since the extra invalidation tra�c

was less than the tra�c eliminated by the elimination of the explicit block synchro-

nization events. The actual execution time increased for the CD-INV and SCI-INV

protocols, but decreased for the DD-INV protocol. The di�erence in execution time

between the invalidate-based protocols arose from the particular producer-consumer

interaction that was interfered with. For the DD-INV protocol, the interference was

o� the critical timing path of the application, and it was in the critical path for the
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other two invalidate-based protocols.

For the 3DFFT application, the iterative nature of the application required ap-

proximately twice the number of shared writes for the word synchronization case

as compared to the block synchronization case. These extra writes created at least

as many invalidations as were eliminated by the word synchronization, as shown in

table 5.1.6. The resulting network tra�c, as shown in table 5.2, remained about

the same for the same reason. The small number of consumers increased the ex-

ecution time of the distributed directory invalidate-based protocols (DD-INV and

SCI-INV) slightly more than the centralized-directory protocol (CD-INV). Overall,

the word synchronization scheme did not improve the execution time for the 3DFFT

application when invalidate-based cache coherence protocols were used, as shown in

�gure 5.9.

As the number of consumers and line utilization increased, the consumer and

producer interference also increased. For the LU application, word synchronization

increased the number of invalidations and network tra�c as illustrated in tables 5.1.6

and 5.2, respectively. With relatively inexpensive block synchronization in this appli-

cation, the increase in invalidations and network tra�c outweighed any performance

gains from the elimination of the block synchronization operations. Again, word syn-

chronization o�ered no improvement in execution time for systems with invalidate-

based protocols, as shown in �gure 5.9.

Update-Based Protocols

As �gure 5.9 demonstrates, a word synchronization scheme always improved the per-

formance of the applications when update-based cache coherence protocols were used.

The performance gains came from the elimination of both the block synchronization

operation and the update acknowledgments. The word synchronization decreased

both the number of updates and the network tra�c for non-iterative applications as

shown in tables 5.1.6 and 5.2 respectively. For the iterative applications, the extra

writes to clear the data between iterations increased the number of updates for both

update-based protocols. The network tra�c was reduced for the CD-UP protocol,

but it increased slightly for the DD-UP protocol.
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The word synchronization scheme had the largest impact on the DD-UP protocol

when the number of consumers was greater than one. In these cases, the block syn-

chronization scheme required the producer to wait for the updates to be propagated

down the list of caches and then acknowledged. This limited the performance of

the DD-UP protocol. The word synchronization scheme removed the need for these

update acknowledgments.

5.1.7 Relative Performance of Word Synchronization Com-

pared to a Common Base

In this section, the execution times of the applications using a word synchronization

scheme are compared to a common base (CD-INV) for each application. This allows

the absolute performance of the cache coherence protocols to be compared.

Figure 5.10 shows the execution time of the applications using word synchroniza-

tion and prefetch compared to the base invalidate-based cache coherence protocol

CD-INV. As shown in the �gure, the update-based protocols always perform better

than any of the invalidate-based protocols when both use a word synchronization

scheme. The update-based protocols use the hardware-based write grouping scheme

presented in section 5.2.2.

Invalidate-Based Protocols

The DD-INV protocol performed better for the applications with a single consumer.

In these cases, the memory write backs of the CD-INV protocol were unnecessary

since the data was not read from memory again because cache-to-cache transfers were

used to transfer the data to the single consumer. But as the number of consumers

increased, the invalidation latency of the distributed directory protocols resulted in

longer execution times compared to the base CD-INV protocol.
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Figure 5.10: Relative Execution Time of Word Synchronization Compared to a Com-
mon Base

Update-Based Protocols

For the update-based protocols, the performance of the two protocols was almost iden-

tical except for the SPCF application. The improvement in performance compared

to the base CD-INV protocol was best for applications with high line utilization and

a large number of consumers (LU). As the number of consumers decreased, the im-

provement from the update-based protocols also decreased compared to the CD-INV

protocol. Compared to the DD-INV protocol, the improvement of the update-based

protocols was less for applications with a single consumer, but it was more for appli-

cations with multiple consumers.
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5.1.8 Summary

In summary, the word synchronization scheme, when used with invalidate-based pro-

tocols, did not o�er a robust solution. It only improved the performance for appli-

cations with a small number of consumers and a low line utilization. These applica-

tion characteristics tended to avoid consumer interference. Conversely, systems with

update-based protocols could take advantage of the word synchronization scheme.

The resulting execution times were always less than the block synchronization case,

and they were always less than the corresponding execution times for the invalidate-

based systems using word synchronization.

The performance of word synchronization was not stable when invalidate-based

cache coherence protocols were used because the de�nition of the invalidate-based

protocols prevented the producer and consumers from actively sharing a memory

line. The producer was required to obtain exclusive ownership of the line before

writes could be performed. Consumers who might be consuming data from the line

were forced to give up their copy of the line. The simulated results of the scienti�c

applications demonstrated the performance loss that can occur as the producer and

consumers interfere with each other.

The de�nition of update-based protocols o�ered a much better match to word syn-

chronization. The protocols allowed multiple consumers and producers to maintain

copies of a given memory line at the same time, and the producer and consumers of

data could not interfere with each other.

The system architecture studied tended to favor the ideal case for the invalidate-

based protocols. The load/store limited processor model created bursty read and

write streams which reduced the probability of consumer and producer interference.

The simulations did not simulate other events that might introduce bubbles into the

write and read streams. These events include private data misses, operating system

actions, page faults and context switches. Any of these could increase the number of

invalidated lines when invalidate-based protocols were used. These events would not

increase the work required by the update-based protocols.
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5.2 Write Grouping

As mentioned in the last section, write grouping can be used to improve the e�ciency

of write updates. The goal of write grouping is to group single writes destined for

the same memory line into larger, more e�cient write groups. Grouping is able

to improve performance in two ways. First, grouping writes allows the cost of the

network header to be amortized across all words in the group. The second advantage

of grouping is that the cost of memory updates can also be amortized across more

words in a grouped update than in a single word update.

E�cient grouping can signi�cantly reduce the network tra�c. For example, �g-

ure 5.11 shows the number of network words required to transfer a portion of a

memory line using a line transfer, single word updates or a grouped update. The

y-axis is the resulting network tra�c, and the x-axis is the line utilization. The line

utilization is the number of modi�ed words in the memory line that must be trans-

ferred. For line transfers, as used by invalidate-based protocols, the network tra�c
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is constant regardless of the line utilization. For single word updates, every write

update requires three network words: a two word header plus the data word. But

by grouping the writes, the resulting network tra�c is always less than or equal to

the tra�c required by the line transfer; the grouped updates result in the minimal

network tra�c necessary to transfer the line's modi�ed data.

Write grouping can be accomplished using a software-based or hardware-based

scheme. In a software-based scheme, compile time analysis is used to identify writes

to shared data. The compiler issues these writes with a special non-updating write

and issues special write-line instructions to initiate the data updates. Section 5.2.1

explains the software-based scheme in more detail. In a hardware-based scheme,

writes to the same memory line can be grouped into larger write groups at the write

bu�er, as described in section 5.2.2.

5.2.1 Software-Based Write Grouping

With perfect knowledge of the application's write pattern, software-based write group-

ing is able to achieve optimal e�ciency by grouping all shared writes to the same mem-

ory line into a single write group. Compile time analysis is used to identify writes to

shared data, and the compiler would issue these writes using a special write-no-update

instruction. This instruction would write the word into the cache and set a special

update-pending bit for the word1. After all the words written to a given memory line

have been issued, a special write-line instruction is issued that causes the words in

the cache line with the pending-update bit set to be grouped into an update packet

and forwarded to the directory. These special instructions are ignored if the line is in

an exclusive state where there are no other shared copies of the line, and therefore,

no updates are required.

The scheme places a large burden on the compiler. First the compiler must identify

writes to shared data and issue themwith a special write-no-update instruction. Next,

the compiler must issue the special write-line instruction after all the writes to a given

1Each cache line already has a set of valid bits used to allow the protocols to write words into

the line while the line is in a pending state awaiting a miss reply. These bits can also be used as the

update-pending bits when the cache line is in a shared state.
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shared float a[32], b[32], c[32];

for (i = 0; i < 32; i++) 
  a[i] = b[i] * c[i];

shared float a[32], b[32], c[32];

/* Unroll loop into line size 
    segments */
for (i = 0; i < 16; i++) {
  /* Write data */
  temp = b[i] * c[i];
  WriteNoUpdate(a[i],temp);
}

/* Issue update for line */
WriteLine(&(a[0]));

for (i = 16; i< 32; i++) {
  /* Write Data */
  temp = b[i] * c[i];
  WriteNoUpdate(a[i],temp);
}

/* Issue update for line */
WriteLine(&(a[16]));

shared float a[32], b[32], c[32];

/* Set line address */
LastLine = &a & ~0x3f
for (i = 0; i < 32; i++) {
  temp = b[i] * c[i];
  /* Write data */
  WriteNoUpdate(a[i],temp);
  /* Write to new line ? */
  if ((&a[i] & ~0x3f) != LastLine) {
    /* Issue update for last line */
    WriteLine(LastLine);
    /* Set line address */
    LastLine = &(a[i]) & ~0x3f;
  }
}
/* Issue update for last line */
WriteLine(LastLine);

a) Original Code b) Compile-Time grouping c) Run-Time grouping

(Line size = 16 words)

Figure 5.12: Software-Based Write Grouping

line have been issued. Note that a write line instruction is required for each cache

line with pending updates. If the application is data independent, the compiler may

simply insert these instructions at the proper location in the code. Alternatively,

the compiler may insert code around each write to generate the necessary write-line

instructions at run time. In this case, the code must maintain the line address of the

last shared write. When the line address of the writes change, a write-line instruction

is issued for the last line address. This run-time implementation would add several

instructions per write and would require the use of a register to maintain the last line

address.

Figure 5.12 shows an example loop and illustrates how the software-based scheme

may be implemented. The original code is a simple loop that computes a set of

values for the shared vector a. For the compile-time grouping, the loop is unrolled

into segments that are of length equal to the memory line size. The writes are issued

using the specialWriteNoUpdate instruction that writes the values into the cache but

does not initiate an update. Then, after the full line of data has been produced, the
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WriteLine instruction is issued for the line to initiate the update. This is repeated

for each memory line. For the run-time grouping, each write is again issued with the

WriteNoUpdate instruction, but the line address of the write must be compared with

the line address of the last write. If they are not equal, a WriteLine instruction is

issued for the last line, and the last line pointer is set to the new line address. A �nal

WriteLine instruction must be issued to initiate the update for the last line's data.

As illustrated from the above discussion, the software-based scheme may be di�-

cult to implement e�ciently, but the scheme is able to achieve optimal grouping e�-

ciency by grouping all writes to a given cache line. The compile-time software-based

scheme will be used to compute the optimal grouping e�ciency for each application

studied and to demonstrate that the hardware-based scheme presented in the next

section can approach this e�ciency.

5.2.2 Hardware-Based Write Grouping

In a hardware-based write grouping scheme, writes are grouped as they are written

into the write bu�er, as shown in �gure 5.13. The scheme requires an additional

grouping bit for each word in the write bu�er. As the processor issues the writes, the

line address of the write is compared with the line address of the last write inserted

into the write bu�er. If the write is to the same line, the additional grouping bit is set

to 1, indicating that the write should be grouped with the last write inserted into the

write bu�er. When the cache processes the writes from the write bu�er, it consumes

all writes in a write group, and it is able to issue the write update, if needed, in a

larger, more e�cient packet.
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the delay timeout expires and the write is sent to the cache. Notice that the delay

timeout only a�ects the last write in a write burst.

W0,W1,W5, W2,W3,W9,W0,

{ { {

W2,3W5 W9 W0

Write Groups 
to cache 

Processor Write Stream
Wi to offset i
Line size = 2

3) Delay Timeouts
     (3 Cycles)

2) Writes to 
    new line

Time

W0,1

{ {
Figure 5.14: Hardware-Based Write Grouping Example

The grouping hardware adds an extra pipeline stage to the write bu�er. Writes

now take a minimum of two cycles to reach the cache, but the write bu�er may still

accept writes at a rate of one per cycle.

5.2.3 Grouped Update Network Packet

To send the grouped update e�ciently, a bit vector is used to indicate the line o�sets

of the grouped writes. In this vector, bit bi would be 1 if the data words in the

packet included an update for o�set i. The data following the packet header must be

Op
(4b)

Data Word Offset i
(32b)

Line Address
(28b)

32 bits

Offset Mask
(16b)

Src
(6b)

Dst
(6b)

Data Word Offset j
(32b)

Increasing 
Offsets

   i < j
   i = j

Two word 
packet header Cnt

(4b)

Figure 5.15: Grouped Update Packet



114 CHAPTER 5. ENHANCEMENTS TO UPDATE-BASED PROTOCOLS

arranged in ascending o�set order, as shown in �gure 5.15. To achieve this ordering

for the software-based scheme, the cache simply reads the update-pending words in

the proper o�set order. For the hardware-based scheme, the cache must �rst read the

write group from the write bu�er. These writes may be in any o�set order and may

contain multiple writes to the same o�set. Next, the words are written into the cache

line using the valid bits, as in the software-based scheme, to indicate which words of

the cache line have been modi�ed. Finally, the words are read from the cache line in

the proper o�set order, and the update packet is generated. The valid bits are then

cleared.

5.2.4 Write Grouping Performance

Grouping E�ciency

Table 5.3 shows the average write group size for the two update-based cache coherence

protocols using both software-based (SW) and hardware-based (HW) write grouping

schemes. The average write group size is given for both block and word data synchro-

nization schemes for the �ve applications under study. Block synchronization requires

explicit synchronization events such as 
ags or barriers, and these variables are al-

located on separate memory lines to avoid false sharing. Therefore, synchronization

writes cannot be grouped with any other writes since no other data is allocated on

the same line as the synchronization variable. This allocation policy results in a write

group of one word which will reduce the average write group size. In contrast, word

synchronization combines the synchronization information with the data word. In

this case, the average write group sizes are slightly larger than in the block synchro-

nization case; the di�erence indicates the relative frequency of synchronization writes

to data writes.

With an ideal knowledge of the applications' write patterns, the software-based

scheme is able to group all writes destined for the same line into optimal write groups.

The actual size of the optimal write group is determined by each application's average

line utilization, which is given in table A.5. The higher the line utilization, the larger

the optimal write group. The maximum write group size is 16 words, a full memory
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Applications Sync CD-UP-SW CD-UP-HW DD-UP-SW DD-UP-HW

MF Block 13.2 13.2 13.2 13.2
Word 14.9 14.9 14.9 14.9

PDE Block 4.5 4.4 4.5 4.4
Word 8.0 7.9 8.0 7.9

SPCF Block 1.4 1.4 1.4 1.4
Word 1.9 1.9 1.9 1.9

3DFFT Block 3.0 1.8 3.0 1.9
Word 3.5 2.2 3.5 2.3

LU Block 9.5 9.5 9.5 9.5
Word 9.5 9.5 9.5 9.5

Table 5.3: Grouping E�ciency - Words Per Update Packet

line.

As indicated in table 5.3, the hardware-based grouping scheme is almost able to

achieve the same write grouping e�ciency as the software-based grouping scheme

for both update-based protocols. The one exception is the 3DFFT application. In

this application, the average shared data write rate is too low to be captured by the

hardware grouping scheme using a �ve cycle grouping window. In section 5.2.5, the

e�ect of varying the length of the write grouping window will be examined.

Execution Time

Figure 5.16 shows the relative execution times for the applications using the two

grouping schemes compared to the non-grouping case for each update-based protocol.

For all applications, except 3DFFT, the hardware-based scheme resulted in about the

same or faster execution time compared to the software-based grouping scheme for

both update-based protocols. The hardware-based scheme did not perform as well for

the 3DFFT since the write grouping was sub-optimal compared to the software-based

scheme, as was described in section 5.2.4,

The software-based grouping scheme resulted in a signi�cantly longer execution

time than the hardware-based scheme for the MF application for both protocols and

the LU application for the DD-UP protocol. In the MF application, the data was
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Figure 5.16: Relative Execution Time of Grouping Schemes Compared to Non-
Grouping Case

not as eagerly shared as in the other applications. Most of the writes were to cache

lines in the exclusive state, which did not require updates. In this case, the extra

cycles introduced by the software-based scheme outweighed any performance gain

from the relatively few write groupings. For the LU application, the observed write

miss latency was increased because the delay to issue the writes, introduced by the

software-based scheme, reduced the amount of the miss latency which could be hidden

behind useful work. This resulted in a slightly longer execution time for the DD-UP

protocol.

The performance improvement from write grouping was larger for the CD-UP

protocol than for the DD-UP protocol. The write grouping improved the performance

of the CD-UP protocol by reducing both the network tra�c and the memory update

overhead. The DD-UP protocol did not update memory on each write and, therefore,

only bene�ted from the reduction in network tra�c.

5.2.5 Variations in Hardware-Based Grouping

This section examines the performance of the hardware-based write grouping scheme

when the grouping delay was varied and the location of the write grouping bu�er was
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CD-UP-HW DD-UP-HW
Sync 0 5 10 15 20 0 5 10 15 20

MF Block 4.6 13.2 13.2 13.2 13.2 4.8 13.2 13.2 13.2 13.2
Word 4.8 14.9 14.9 14.9 14.9 5.0 14.9 14.9 14.9 14.9

PDE Block 2.9 4.4 4.5 4.5 4.5 2.8 4.4 4.5 4.5 4.5
Word 6.8 7.9 8.0 8.0 8.0 6.4 7.9 8.0 8.0 8.0

SPCF Block 1.2 1.4 1.4 1.4 1.4 1.2 1.4 1.4 1.4 1.4
Word 1.2 1.9 1.9 1.9 1.9 1.2 1.9 1.9 1.9 1.9

3DFFT Block 1.2 1.8 2.7 2.9 3.0 1.2 1.9 2.7 2.9 3.0
Word 1.5 2.2 3.2 3.5 3.5 1.6 2.4 3.2 3.4 3.5

LU Block 3.5 9.5 9.5 9.5 9.5 3.1 9.5 9.5 9.5 9.5
Word 3.3 9.5 9.5 9.5 9.5 4.1 9.5 9.5 9.5 9.5

Table 5.4: HW Grouping Delay (Cycle) - Words Per Write Group

moved to the output of the cache or the input of the memory/directory.

Write Grouping Delay

Table 5.4 shows the words per write group as the write grouping delay was varied

from no delay to 20 cycles of delay. With no delay, the write grouping scheme was

able to group only a small fraction of the writes. This grouping only occurred when

the writes were delayed in the write bu�er because the cache was busy responding to

a read or network request.

As the write grouping delay was increased, the grouping scheme captured many

more writes. As noted in section 5.2.4, a �ve cycle delay was su�cient to group almost

all writes that can be grouped. The one exception was the 3DFFT application, but

as the write grouping delay was increased for this application, more writes were

grouped. A ten cycle delay resulted in an almost optimal write grouping e�ciency

for all applications.

However, increasing the write grouping delay was not without its cost since the

increase in delay also a�ected the total execution of the applications, as shown in

�gure 5.17. The �gure shows the relative execution times as the write grouping

delay was varied from 0 cycles to 20 cycles. In the �gure, the execution times of
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the applications improved with increasing delay until the delay was large enough to

group a signi�cant portion of the writes. Increasing the delay beyond this point only

a�ected the last write of each data block. Intermediate writes were grouped as new

writes were inserted into the write bu�er. If these writes were e�ciently grouped,

then the write rate was faster than the grouping delay, and only the last write in the

group was delayed by the full delay timeout period, as was described in section 5.2.2.
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Figure 5.17: Relative Execution Time for Alternative Grouping Delays for Hardware-
Based Grouping

The relative impact of the delay is largest for the block synchronization case. In

this case, the processor must stall until all writes have been performed (all updates

acknowledged). The performance loss depends on the block size and the write comple-

tion latency. If the data block is large, the grouping delay will be small compared to

the total write time. But in applications such as SPCF where the block size is small,

the delay becomes a noticeable fraction of the total write time. The e�ect is clearly

illustrated in �gure 5.17 for this application using block synchronization, especially

for the CD-UP protocol. For the DD-UP protocol, the write completion latency is

longer than in the CD-UP protocol, and it increases with the number of caches that

are updated on each write. The write grouping delay is small compared to this write

completion latency, and therefore, the impact of the increased write grouping delay
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CD-UP-HW DD-UP-HW
Applications Sync WB CO MI WB CO MI

MF Block 13.2 7.0 6.6 13.2 7.1 7.0
Word 14.9 6.8 6.2 14.9 7.3 7.3

PDE Block 4.4 3.5 1.1 4.4 3.3 1.3
Word 7.9 5.3 1.1 7.9 1.2 1.2

SPCF Block 1.4 1.2 1.2 1.4 1.2 1.2
Word 1.9 1.4 1.2 1.9 1.3 1.3

3DFFT Block 1.8 1.8 1.1 1.9 1.8 1.1
Word 2.2 2.2 1.2 2.4 2.3 1.2

LU Block 9.5 8.2 1.0 9.5 7.8 1.1
Word 9.5 7.5 1.0 9.5 2.3 2.3

Table 5.5: Grouping Location - Words Per Write Group

was negligible for the DD-UP protocol. The one exception the MF application. As

noted in the last section, data was not eagerly consumed in this application. Thus,

the delay only increased the execution time.

For word synchronization, the added delay for the last word written had little

impact on the total execution time of the application, as shown in �gures 5.17. When

an application used word synchronization, the consumption time of earlier data words

overlapped the latency of subsequent data updates.

Location of the Grouping Bu�er

Write grouping could be done at any request bu�er in the system. Two other can-

didates for write grouping are the request output bu�er of the cache (CO) and the

request input bu�er of the memory (MI). Table 5.5 shows the write group sizes when

write grouping is introduced at these bu�ers. Grouping writes at either of these

bu�ers is not as e�cient as grouping at the write bu�er (WB), and increasing the

grouping delay beyond 5 cycles had little impact on the grouping e�ciency at these

other bu�ers. The write bu�er grouping e�ciency was always the best.

Grouping at these other locations does not work well since other network packets

tend to disrupt the 
ow of writes from the caches to the directory/memory. The
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grouping scheme works by attempting to group a new write packet with the last

packet inserted into the bu�er. The complexity of the bu�ers could be increased to

allow writes to be grouped with any appropriate write packet currently in the bu�er.

This might improve grouping, but, as discussed in section 5.2.4, the write grouping

e�ciency at the write bu�er is almost optimal. The additional cost of increasing the

bu�er complexity would result in no performance gain compared to the inexpensive

write bu�er grouping.

5.2.6 Summary

In summary, this section has explored the performance gains from write grouping in

update-based cache coherent systems. Two types of grouping schemes were discussed:

a software-based and a hardware-based scheme. The software-based scheme required

compiler support, but the scheme was able to optimally group writes. The hardware-

based scheme was shown to almost achieve this optimal write grouping e�ciency if a

grouping delay window was introduced, and the scheme required only a small amount

of hardware support and little, if any, software support.

The write-bu�er write grouping improved the performance of the CD-UP protocol

the most. The improvements in execution time ranged from about 10% to over 50%.

The gains came from two sources. First, the write grouping signi�cantly decreased

network tra�c resulting from the write updates. Second, the larger write groups

decreased the average memory update latency per word as the memory access time

could be amortized across more data words. The DD-UP protocol also bene�ted from

write grouping. The improvement in execution time ranged from only a few percent

to over 50%. Since the DD-UP protocol did not update memory, the gain came only

from a reduction in write update network tra�c.

Increasing the write grouping delay beyond the base 5 cycles had little impact on

the e�ciency of the write grouping. The one exception was the 3DFFT application

in which a 10 cycle delay was required to achieve near optimal write grouping e�-

ciency. Also, increasing the delay beyond 5 cycles had a minor a�ect on the total

execution time of the application. Moving the write grouping to the cache output



5.2. WRITE GROUPING 121

bu�er or the memory input bu�er resulted in poor write grouping and, therefore,

little improvement in total execution time compared to the non-grouping case.

Overall, write grouping is essential for improving the performance of update-based

cache coherent system with a general interconnect, and a write grouping delay window

of 5 cycles was su�cient to achieve e�cient write grouping in most applications

without adversely a�ecting non-grouped writes.



Chapter 6

Performance Results

The last chapter discussed the performance improvements from word synchronization

and write grouping schemes for update-based cache coherence protocols. In this

chapter, the performance of the update-based protocols are compared directly to the

three invalidate-based protocols for each application.

As described previously, the actions of a producer and consumer interaction using

block synchronization (release consistency memory model) can be divided into the

basic operations shown in �gure 6.1.

The performance of each cache coherence protocol is dependent on how e�ciently

it can minimize each of the latency components shown in the �gure: the write, fence,

synchronization and read latencies. The write latency is simply the time to \issue"

or send the writes to the write bu�er. The fence latency is the latency until all

writes have been performed. In the invalidate-based protocols, a write is considered

Write Set Semaphore
Producer

Consumer
ReadWait on Semaphore

Fence

Synchronization Latency Read Latency

Work

Fence LatencyWrite Latency

Figure 6.1: Block Synchronization
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to have been performed when the cache receives exclusive ownership of the line. For

the update-based protocols, a write is considered to be performed when all necessary

updates have been acknowledged. The synchronization latency is the time a consumer

waits for the desired semaphore to be set; and �nally, the read latency is the time

to read the data once the semaphore has been set. For word synchronization, the

latency components are reduced to the write latency and the read/synchronization

latency, as shown in �gure 6.2. The discussion of the results will rely heavily on these

latency components.

Producer

Consumer

Work/Write

Read

Read/Sync Latency

Line A

Read Prefetch
Line B

Figure 6.2: Word Synchronization

The next �ve sections describe the simulation results for the �ve �ne-grain, scien-

ti�c applications examined. This discussion begins by examining applications with

a single consumer and moderate to high line utilization: MF and PDE. Next, the

impact of a small number of consumers will be examined by studying the SPCF and

3DFFT applications, and �nally, the impact of both high line utilization and multiple

consumers is examined in the LU application.

For each application, a graph of the relative execution time of each protocol com-

pared to the base CD-INV invalidate-based protocol is presented. On each graph, four

di�erences are labeled (one set for each update-based protocol - solid lines for CD-UP

and dashed lines for DD-UP). Di�erence BS represents the di�erence in the perfor-

mance of the update-based protocols without write bu�er grouping and the CD-INV

protocol using block synchronization. Di�erence BS-G represents the improvement in

the block synchronized update-based protocols when write bu�er grouping is added.
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Di�erence WS represents the improvement in the update-based protocols when word

synchronization is used rather than block synchronization, and di�erence WS-G rep-

resents the improvement in the word synchronized update-based protocol when write

bu�er grouping is added.

Table C.1 in appendix C summarizes the relative execution times of each protocol

for the �ve applications examined.

6.1 MF Application

For the block synchronization case without write grouping, the CD-UP protocol in-

creased the execution time by 26% compared to the CD-INV protocol, and the DD-UP

protocol has similar performance to the DD-INV protocol, as shown by di�erence BS

in �gure 6.3. The update-based protocols were able to reduce the read latency by

updating the consumers' caches, but because of the high line utilization of the appli-

cation, these single word updates were very ine�cient compared to the line transfers

of the invalidate-based protocols. These ine�cient updates increased the congestion

in the system which resulted in longer write and synchronization latencies.

The addition of write grouping improved the e�ciency of the updates which de-

creased the network congestion. The write grouping improved the execution time of

the CD-UP and DD-UP protocols by 28% and 4% respectively, as shown by di�erence

BS-G in �gure 6.3. Write grouping was more e�ective in the CD-UP protocol because

the larger update packets reduced the average overhead of each memory update. The

update-based protocols were now able to outperform the invalidate protocols by a

slight margin.

With single word updates signi�cantly congesting the system, word synchroniza-

tion was able to hide only a portion of the update latency, which resulted in a minimal

improvement in the execution time of the update-based protocols, as indicated by

di�erence WS in �gure 6.3. Word synchronization improved the performance of the

CD-UP protocol by 13% and the performance of the DD-UP protocol by 7%.
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Figure 6.3: Relative Execution Time for MF

The use of both word synchronization and write grouping improved the perfor-

mance of the CD-UP and DD-UP protocols by 25% and 7% respectively compared

to the non-grouping case, as shown by di�erence WS-G in �gure 6.3. As in the block

synchronization case, write grouping reduced the congestion, which decreased the

write latency compared to the word synchronization case without write grouping.

Overall, the update-based protocols with the two enhancements were able to out-

perform the invalidate-based protocols. For the CD-UP protocol, the block synchro-

nization case with write grouping performed better than the word synchronization

case without write grouping. It improved the performance of the application by 9%

compared to the CD-INV protocol. For the DD-UP protocol, the performance of

the word synchronization case without write grouping was slightly better than the

block synchronization case with write grouping. For this case, the improvement in
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the execution time was 4% compared to the DD-INV protocol. The use of both

word synchronization and write grouping allowed the update-based protocols to im-

prove performance of the application by 18% for the CD-UP protocol compared to

the CD-INV protocol and 10% for the DD-UP protocol compared to the DD-INV

protocol.

6.2 PDE Application

The update-based protocols using block synchronization were able to decrease the

total execution time of the PDE application by 3% for the CD-UP protocol compared

to the CD-INV protocol and by 12% for the DD-UP protocol compared to the DD-

INV protocol, as shown by di�erence BS in �gure 6.4. The main source of the

improvement was a reduction in the synchronization latency resulting from the update

of the semaphores. The update of the shared data also reduced the read latency,

but the overall impact was small since the invalidate-based protocols were able to

e�ectively prefetch the necessary data.

Write grouping was able to group the 8 data writes destined for each neighboring

node into single update packets. These more e�cient packets reduced the overhead

and congestion in the network and at the caches. This reduction in congestion resulted

in a decrease in the fence latency which in turn reduced the synchronization latency.

The sum of these latency reductions resulted in an improvement in the execution time

of 35% and 18% for the CD-UP and DD-UP protocols respectively compared to the

non-grouping case, as shown by di�erence BS-G in �gure 6.4.

The improvement in the execution time of the update-based protocols when word

synchronization and no write grouping was used was minor compared to the block

synchronization case without write grouping, as shown by di�erence WS in �gure 6.4.

In this iterative application, the producer was required to clear the data between

iterations. This extra tra�c limited the possible improvements in performance from

word synchronization.
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Figure 6.4: Relative Execution Time for PDE

As in the block synchronization case, write grouping with word synchronization

was able to group all writes destined for each consumer into a single update packet.

The resulting synchronization and read latency was reduced to half that of the update-

based protocol using word synchronization without write grouping. This reduction in

latency along with the elimination of the fence latency reduced the execution times

of the update-based protocols by 42% and 31% for the CD-UP and DD-UP protocols

respectively, as shown by di�erence WS-G in �gure 6.4.

Overall, the update-based protocols were able to signi�cantly improve the execu-

tion time of this iterative application. The update-based protocols performed well

in the block synchronization case, and the addition of write grouping to the block

synchronization case improved the execution time by about 35% compared to the

CD-INV protocol. The use of word synchronization and write grouping allowed the
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update-based protocols to improve the execution time by 49% for the CD-UP proto-

col compared to the CD-INV protocol and 43% for the DD-UP protocol compared to

the DD-INV protocol.

The di�erence between the CD-UP and DD-UP protocols arises from the di�erence

in the path of the data updates. In the CD-UP protocol, updates are sent to the

directory where they are forwarded to the consumer. In the DD-UP protocol, the path

of the update depends on the producer's position in the cache list. If the producer is

at the head of the list, the update is sent directly to the consumer, but if the producer

is not at the head of the list, the update must be sent to the directory �rst and then

forwarded to the consumer at the head of the list. In this particular application, each

update required an average of 1.5 update hops indicating that the producer's cache

was at the head of the list half of the time. This reduction in update hops allowed the

DD-UP protocol to perform slightly better than CD-UP for the non-grouping cases.

When write grouping was introduced, the reduction in congestion reduced the cost

of the extra half hop which minimized the di�erence in the performance between the

update-based protocols.

6.3 SPCF Application

When using block synchronization, the CD-UP and DD-UP protocols were able to re-

duce the total execution time of the SPCF application. The CD-UP protocol reduced

the execution time by 21% compared to the CD-INV protocol, and the DD-UP proto-

col reduced the execution time by 16% compared to the DD-INV protocol, as shown

by di�erence BS in �gure 6.5. The main source of this reduction was a decrease in

the synchronization latency which accounted for a signi�cant portion of the execution

time. The reduction in read latency was signi�cant even though the invalidate-based

protocols were able to use prefetch to hide a large portion of the read latency, but

overall, the read latency was a small portion of the total execution time.

Since the application has a low line utilization, the write grouping scheme had

little opportunity for grouping writes. In both update-based protocols, the grouped

update packet contained an average of only two words, which resulted in a minimal
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improvement in the execution time, as shown by di�erence BS-G in �gure 6.5.

In this application, word synchronization allowed for the elimination of the costly

explicit synchronization. With each consumer only consuming a fraction of the data

produced by each producer, the cost of an explicit synchronization semaphore was

high. As a result of the elimination of this explicit synchronization and the fence

operation, the execution time of the CD-UP protocol decreased by 39%, and the

execution time of the DD-UP protocol decreased by 40% compared to the block

synchronization case, as shown by di�erence WS in �gure 6.5.

C
D

-I
N

V

D
D

-I
N

V

SC
I-

IN
V

C
D

-U
P

D
D

-U
P

C
D

-U
P

D
D

-U
P

C
D

-U
P

D
D

-U
P

C
D

-U
P

D
D

-U
P

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
E

xe
cu

ti
on

 T
im

e

Relative Execution Time 
SPCF Application - 1.9 Consumers - 11% Line Utilization

Private Data
Read+Sync
Read
Synchronization
Prefetch
Write(Fence)

Block Block Block/Group Word Word/Group
Synchronization/Grouping

Latency Components:

BS BS-G WS WS-G

Figure 6.5: Relative Execution Time for SPCF

The use of write grouping with word synchronization also had a minimal impact

on execution time for both update-based protocols, as shown by di�erence WS-G in

�gure 6.5. For both protocols, the early consumption of data permitted by the word
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synchronization scheme was able to hide a majority of the latency of subsequent

updates.

The di�erence between the CD-UP and DD-UP protocol was due to the increased

latency introduced by the longer sharing lists of caches in the DD-UP protocol. On

the average, the list of caches was only 2.3 caches long, but the maximum reached

10 caches. The longer list increased the fence latency as updates were required to

traverse the entire list before being acknowledged. The synchronization latency also

increased as caches at the end of the list had to wait longer before receiving the data

updates.

6.4 3DFFT Application

For the block synchronization case, the congestion created by the ine�cient updates

prevented the update-based protocols from improving the performance of the ap-

plication compared to the CD-INV and DD-INV invalidate protocols, as shown by

di�erence BS in �gure 6.6. The update-based protocols did reduce the read and syn-

chronization latencies, but the increase in the write and fence latency outweighed any

gain from the reduced latencies. The CD-UP protocol increased the execution time of

the application by 11% compared to the CD-INV protocol, and the DD-UP protocol

increased the execution time of the application by 37% compared to the DD-INV

protocol.

Since the application had a relatively high line utilization, the write grouping

scheme was able to group a majority of the single word updates into more e�cient

packets. This grouping resulting in a signi�cant reduction in the write latency and a

small reduction in the read and synchronization latencies. These reductions allowed

the write grouping to improve the performance of the CD-UP protocol by 34% and

the DD-UP protocol by 28%, as shown by di�erence BS-G in �gure 6.6.

Word synchronization resulted in a minimal improvement in the execution time

of the application, as shown by di�erence WS in �gure 6.6. The iterative nature of

the application resulted in almost twice the number of shared writes as in the block

synchronization case since the shared data had to be cleared between each iteration.
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These extra writes outweighed any performance gains from the word synchronization.
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Figure 6.6: Relative Execution Time for 3DFFT

As with the block synchronization case, write grouping was able to improve the

performance of the application when word synchronization was used, as shown by

di�erence WS-G in �gure 6.6. The grouped writes reduced the network congestion

created by the updates. This allowed for a signi�cant reduction in the write and

read/synchronization latencies.

Overall, the CD-UP protocol was able to improve the performance of the applica-

tion by 34% compared to the CD-INV protocol, and the DD-UP protocol was able to

improve the performance of the application by 22% compared to the DD-INV protocol

when both enhancements are used. The di�erence between the CD-UP and DD-UP
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protocols was due to the multiple consumers for each data block. The multiple con-

sumers increased the update latency in the DD-UP protocol since each update had

to traverse the list of caches sharing the updated line.

6.5 LU Application

For the LU application with a high line utilization and a large number of consumers,

the single word updates of the update-based protocols were extremely ine�cient.

The updates created signi�cant congestion in the system, and the large number of

consumers increased the fence latency since each update had to be acknowledged. The

resulting execution times of the update-based protocols using block synchronization

were over twice that of the CD-INV protocol, as shown by di�erence BS in �gure 6.7.
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The high line utilization allowed for ample write grouping. The fewer grouped

update packets decreased the fence and synchronization latencies. The resulting im-

provement in performance for the update protocols is shown by di�erence BS-G in

�gure 6.7. For the CD-UP protocol, the resulting reduction in execution time was

signi�cant indicating that congestion dominated the execution time in this case. But

for the DD-UP protocol, these reductions did little to improve the execution time

indicating that the update latency which resulted from the longer lists of caches

dominated the execution time.

The addition of word synchronization eliminated the need for the write fence and

allowed the consumption of early data words to hide a portion of the update latency

of subsequent words. In the CD-UP protocol, the early consumption helped to hide

a large portion of the congested update latency and improve the performance of the

protocol by 39%, as shown by di�erence WS in �gure 6.7. For the DD-UP protocol,

the word synchronization improved the performance by 60%. The elimination of the

fence latency reduced the performance impact of the longer lists of caches. Caches

began consuming data as soon as it arrived. Caches at the end of the list only

experienced a long wait for the �rst word of the data to arrive; the subsequent words

followed closely behind the �rst.

The use of write grouping with word synchronization improved performance even

more. Write grouping improved the performance of the update-based protocols by

65% and 61% for the CD-UP and DD-UP protocols respectively, as shown by dif-

ference WS-G in �gure 6.7. In both protocols, the grouping decreased congestion in

the network and caches. In the CD-UP protocol, the larger update packets reduced

the average memory update latency because the memory access overhead per word

decreased with increasing update packet size.

6.6 Summary

The relative performance of the update-based protocols was dependent on the line

utilization and the number of consumers. Figure 6.8 summarizes these characteristics

for the applications that were studied.
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Figure 6.8: Application Space

The line utilization determined the e�ciency of the updates. In the applications

with a low line utilization, the single word updates were more e�cient than the

line transfers of the invalidate protocols. But as the line utilization increased, the

e�ciency of these updates decreased. These ine�cient updates tended to congest

the network, caches and memories. Write grouping was introduced to address this

problem.

Write grouping was able to group single updates into larger update packets, which

improved the e�ciency of the updates and decreased congestion. This improvement

in e�ciency was dependent on the line utilization of the application, as indicated in

�gure 6.8. When the line utilization was low, the possibility of write grouping was

small. But as the line utilization increased, the write grouping scheme was able to

group a signi�cant number of updates. These new update packets were as e�cient

as the line transfers of the invalidate protocols, even for the applications with line
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utilizations approaching 100%. The improvement in the execution time of the update-

based protocols when write grouping was added ranged from 4% to 61% for the block

synchronization case; the improvement was largest for the applications with the high

line utilization.

Word synchronization eliminated the explicit synchronization semaphores from

the applications and allowed the consumers to begin consuming the data as soon as

possible. The elimination of the semaphores removed the need for update acknowl-

edgments and for the fence operation. In applications with few consumers, this had

little impact on performance. But as the number of consumers increased, the im-

pact of the elimination of the update acknowledgments increased, especially in the

DD-UP protocol. In this protocol, the latency of the update acknowledgments and

the fence operation was dependent on the number of the consumers, which deter-

mined the length of the list of caches that each update had to traverse before being

acknowledged. The improvement in execution time of the update protocols ranged

from about 10% to almost 40% for the CD-UP protocol and from less than 5% to

over 50% for the DD-UP protocol when word synchronization was used compared to

the block synchronization case.

The use of both enhancements allowed the update-based protocols to signi�cantly

improve the performance of the applications when compared to the invalidate-based

protocols; the improvements in execution times ranged from about 15% to over 50%

compared to the CD-INV protocol. The applications with both high line utilization

and a larger number of consumers bene�ted the most from the enhancements. Even in

applications with high line utilization and a single consumer, which tend to favor the

invalidate-based protocols, the update protocols were able to improve the execution

time.

With both enhancements, the di�erence between the CD-UP and DD-UP proto-

cols was small. Write grouping improved the performance of the CD-UP protocol

more than the DD-UP protocol because the overhead of updating each memory word

decreased with the larger packet size. Word synchronization had the largest impact

on the DD-UP protocol. It eliminated the need for update acknowledgments which
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Figure 6.9: Relative Execution Time Averaged Across All Applications

reduced the impact of the length of the sharing list on the performance of the pro-

tocol. The choice of which update protocol to use will be dependent on other issues

such as the scalability of the directory structure.

Figure 6.9 plots the relative execution time of each protocol, averaged (geometric

mean) across all 5 scienti�c applications, compared to the base CD-INV protocol.

For the invalidate-based protocols, the CD-INV protocol slightly outperformed the

DD-INV protocol, and both of these performed signi�cantly better than the SCI-INV

protocol. For the update-based protocols, the graph plots the performance of the

protocols with the write grouping scheme for both the block (CD-UP and DD-UP)

and word (CD-UP-WS and DD-UP-WS) synchronization cases. For the block syn-

chronization case, the performance of the CD-UP protocol averaged about 24% better

than the base CD-INV invalidate-based protocol, but the update latency of the DD-

UP protocols limited the overall performance of the protocol; the performance of the

DD-UP protocol was similar to the DD-INV protocol. The use of the word synchro-

nization scheme and write grouping allowed the update-based protocols to improve
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the performance of the applications by about 40% averaged across all applications.



Chapter 7

Sensitivity of Protocols

This chapter examines the sensitivity of the protocols to both variations in architec-

tural parameters and to shared-memory applications with migratory data. In each

case, only the speci�ed parameter is changed. All others remain constant.

7.1 Architecture Parameter Sensitivity

The actions required by the cache coherence protocols to maintain consistency directly

a�ects the latency of shared data accesses. These actions can be divided into three

basic operations: accessing cache line state and data, accessing directory state and

memory data, and sending protocol messages between nodes to change the state of

cache and memory lines at other nodes in the system.

There are several architectural parameters which directly a�ect the performance

of the protocols. The �rst parameter is the cache access time which a�ects the access

time of the cache line state and data. The second closely related parameter is the

directory access time, and the last set of parameters is the network bandwidth and

latency. These a�ect the latency of network transactions performed by the protocols.

In this chapter, the sensitivity of the cache coherence protocols to these architec-

tural parameters is examined. The study will include the two update-based protocols:

the centralized directory protocol (CD-UP) and the distributed directory protocol

138
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(DD-UP). Both update-based protocols use the hardware-based write grouping de-

scribed in chapter 5. The study also examines the three invalidate based protocols:

the centralized directory protocol (CD-INV), the singly-linked distributed directory

protocol (DD-INV) and the doubly-linked distributed directory protocol (SCI-INV).

The performance of the update-based protocols is examined for both the block (CD-

UP and DD-UP) and word synchronization (CD-UP-WS and DD-UP-WS) schemes.

The invalidate-based protocols assume a block synchronization scheme.

The graph in each section plots the geometric mean of the relative execution time

for each protocol averaged across the �ve scienti�c applications (MF, PDE, SPCF,

3DFFT and LU). The relative execution times for each application are given in the

tables in appendix C.2.

7.1.1 Cache Access Time

This section examines the sensitivity of the protocols to changes in the cache access

time for both state and data accesses. Increasing the cache access time will increase

the latency of processor load and stores that access the cache, and it will also increase

the time for the cache controllers to process coherence operations from remote nodes

that may access cache line state or data.

In the base model, each node has a single level cache with a one cycle access time

for both state and data accesses. If the cache is busy and the processor has a request,

the processor is blocked. The graph in �gure 7.1 shows the relative execution time of

the protocols compared to the base CD-INV protocol when the cache access time is

increased from one to �ve cycles.

For the invalidate-based protocols, the increase in cache access time a�ects the

distributed directory protocols more than the centralized-directory protocol. The

DD-INV and SCI-INV protocols satisfy most miss requests by fetching data from

caches rather than from memory as the CD-INV protocol does. The distributed

directory protocols also require more coherence operations at the cache since the

directory is distributed among the caches, and the SCI-INV protocol is even more

sensitive than the DD-INV protocol because it requires more coherence operations at
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the cache to maintain the doubly-linked lists. These two characteristics result in the

distributed directory protocols being more sensitive to the cache access time than the

CD-INV protocol.
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Figure 7.1: Sensitivity to Cache Access Time

For the update-based protocols, the distributed directory protocol (DD-UP) is

more sensitive to the cache access time than the CD-UP protocol. The reasons are

the same as with the invalidate-based protocols, but the DD-UP protocol is also more

sensitive because the data updates must traverse the linked list of caches before being

acknowledged. In the distributed directory, invalidate-based protocols, the increased

latency of the invalidation operations, which must also traverse the linked list, was

often hidden by write prefetching.

Increasing the cache access time actually reduced the overall system congestion in

many cases. By increasing the cache processing time, the rate that the cache injected

new requests into the system also decreased. This decrease resulted in a lower o�ered

bandwidth which actually reduced the latency of other operations in the system.

These reductions tended to o�set a portion of the increased cache access time.
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Overall, the distributed directory protocols were more sensitive to the cache access

time. These protocols required more coherence operations at the cache, and they tend

to fetch data from the cache more often than the centralized directory protocols. The

increase in cache access time directly a�ected both of these operations.

7.1.2 Directory Access Time

This section examines the sensitivity of the protocols to changes in the directory

access time. Increasing the directory access time has the greatest impact on the

protocols which require more directory accesses.

In the base model, the directory is modeled as a single cycle access static RAM,

and the data accesses were from synchronous DRAMs. Figure 7.2 shows the relative

execution time of the protocols compared to the base CD-INV protocol averaged

across all applications when the directory access time is increased from one to �ve

cycles. The �ve cycle access time might approximate a system in which the directory

entries were cached in a fast SRAM and the main memory was used to hold the

uncached directory entries. An average of �ve cycles would result in such a system if

the cached directory hit rate was 50% and the memory access time was 9 cycles.

For the invalidate-based protocols, the impact of the increased directory access

time was minimal, but the impact was largest for the CD-INV protocol. This proto-

col requires more coherence operations at the directory since the entire directory is

stored there. The SCI-INV protocol was also impacted by the longer directory access

time since it requires many operations at the directory even though the directory is

distributed among the caches. The DD-INV protocol was not a�ected by the increase

in directory access time.

For the update-based protocols, the increase in directory access time had a neg-

ligible a�ect on the execution times. Data prefetch allowed a signi�cant portion of

miss request latency to be hidden behind other useful work. When the directory

was accessed for updates, the increase in the directory access time was a very small

portion of the total update latency.
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Figure 7.2: Sensitivity to Directory Access Time

Overall, increases in the directory access time had a minimal impact on the perfor-

mance of the protocols. The only protocols to show a noticeable increase in execution

time were the CD-INV and SCI-INV protocols. These protocols tended to access the

directory more during the critical path of the applications. The increase in directory

access time also decreased the rate of coherence operations, such as invalidates and

updates, from the directory in the centralized directory protocols. This decrease ac-

tually decreased the o�ered bandwidth slightly which allowed for better utilization of

the network and local bus.

7.1.3 Network Bandwidth

In this section, the sensitivity of the protocols to the network bandwidth is examined.

The sensitivity of the protocols was dependent on the amount of tra�c generated

by each protocol. When the o�ered bandwidth of a protocol was much less than

the network bandwidth, the time for a packet to traverse the network tended to be
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limited by the network latency. When the o�ered bandwidth was close to the network

bandwidth then the congestion created by the tra�c dominated the time required for

a packet to traverse the network. The increase in this latency tends to be exponential

with respect to the o�ered bandwidth.

In the base model, the network and local bus are a word (32 bit) wide and run

at 100Mhz for a bandwidth of 400MB/s per link. Figure 7.3 shows the performance

of the protocols when the bandwidth was reduced by a factor of 2 or increased by a

factor of 2.
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Figure 7.3: Sensitivity to Network Bandwidth

For the invalidate-based protocols, the performance of the protocols tracks the

amount of tra�c generated by each protocol. The SCI-INV protocol was the most

sensitive to the changes in the network bandwidth as it generated the most tra�c.

The CD-INV protocol generated slightly less tra�c and was, therefore, less sensitive

to changes in the bandwidth. When the bandwidth was doubled for the CD-INV

protocol, the execution time of the protocol (averaged across all applications) actu-

ally increased. The increase came from the LU application (See table C.4). In this
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application, the increased bandwidth actually allowed more consumers to request the

data before it was produced. This required more invalidations and created more

congestion as the consumers competed for the data. Finally, the DD-INV protocol,

which generated the least amount of tra�c, was the least sensitive to changes in the

network bandwidth. Doubling the bandwidth had a small impact on the performance

of this protocol.

For the update-based protocols, the DD-UP protocol was more sensitive to changes

in the network bandwidth than the CD-UP protocol. The DD-UP protocol generated

more update tra�c since it did not use multicasts to send updates. For the block

synchronization case, the update-based protocols were still more sensitive to the net-

work bandwidth than the invalidate based protocols. This indicated that the tra�c

produced by the protocols still a�ected performance of the protocol even after write

grouping was introduced. In the word synchronization case, the sensitivity was less

since the tra�c was reduced and portions of the update latency were often hidden

behind other useful work.

Overall, the update-based protocols using a block synchronization scheme were

more sensitive to changes in the network bandwidth when compared to the better

invalidate based protocols, CD-INV and DD-INV. Moving to a word synchronization

scheme reduced the sensitivity of the update-based protocols to the network band-

width.

7.1.4 Network Latency

In this section, the sensitivity of the protocols to changes in the network latency is

examined. Changes in the network latency a�ect the time for coherence operations to

traverse the network. Protocols which require many coherence operations will tend

to be more sensitive to changes in the network latency.

The base model assumes a network latency of 8 cycles between two adjacent net-

work nodes or between the local bus and the network interface 1. Figure 7.4 shows

the resulting relative execution time of the protocols when the network latency was

1The simulator accurately simulated the network tra�c.
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halved or doubled.
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Figure 7.4: Sensitivity to Network Latency

For the invalidate-based protocols, the distributed directory protocols were more

sensitive to the network latency than the centralized directory protocols. The SCI-

INV protocol was extremely sensitive to the network latency because the protocol

required signi�cantly more network hops than the other invalidate-based protocols.

The DD-INV protocol was also sensitive to the network latency because of its dis-

tributed directory structure, but the impact was less than the SCI-INV protocol since

invalidations were pipelined in the DD-INV protocol. The CD-INV protocol was the

least sensitive to the network latency. Reducing the network latency had almost no

a�ect on the performance of the protocol which implies that network congestion was

dominating the time it took for packets to traverse the network.

The update-based protocols were less sensitive to changes in the network latency

than the invalidate-based protocols. The update-based protocols required fewer net-

work hops during the critical path of the applications. The consumers prefetched

the data early, and when the data was produced, the producer forwarded the data
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to the consumers. The DD-UP protocol was slightly more sensitive to the network

latency than the CD-UP protocol because the DD-UP protocol required more net-

work hops to send an update packet down the linked list of caches. Finally, the word

synchronization scheme was less sensitive to the network latency compared to the

block synchronization case as it was able to hide a signi�cant portion of the update

latency.

Overall, the proactive nature of the update-based protocols allowed it to be less

sensitive to changes in the network latency. The invalidate-based protocols required

more hops to obtain data during the critical path of the application. Word synchro-

nization allowed the update-based protocols to hide a portion of the update latency

and, therefore, be even less sensitive to the network latency.

7.1.5 Network Multicast

In the base architecture, the network supports multicast packets. The CD-INV proto-

col uses the multicast to send invalidates to multiple nodes, and the CD-UP protocol

uses multicast to send data updates to multiple nodes. This section examines the

sensitivity of the protocols to availability of multicast.

Figure 7.5 shows the performance of the centralized directory protocols with (base

case) and without multicast averaged across the applications which have multiple

consumers (SPCF, 3DFFT and LU). The CD-INV gains little from multicast. For

the CD-UP protocol, the multicast is essential for the 3DFFT and LU application.

In these applications, network tra�c is a problem, and multicast decreased the total

tra�c and reduced the generation time of the update packets. For the block syn-

chronization case, multicast resulted in an average improvement of about 30% for the

CD-UP protocol, and for the word synchronization case, the average improvement

was slightly less, 25%.

The sensitivity of the centralized directory protocols to the multicast would be

less if the performance was averaged across all 5 scienti�c applications because the

execution time of the protocols with respect to the MF and PDE applications is

identical with and without multicast.
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Figure 7.5: Sensitivity to Network Multicast

7.1.6 Load/Store Cycles

In the base architecture, the processor is assumed to be load/store limited. All

non-load/store operations are assumed to execute in parallel with load and store

operations. This section examines the sensitivity of the protocols to the relaxation of

this assumption.

Figure 7.6 shows the performance of the cache coherence protocols for various

load/store cycle counts. The load/store cycle count is the number of cycles charged

for each processor load or store. The base case assumes one cycle per processor

load/store. The additional cycles represent the time to execute other non-load/store

instructions.
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Figure 7.6: Sensitivity to LDST Cycles

As the load/store cycle count increases, the absolute di�erence between the proto-

cols remains approximately the same, but this di�erence becomes a smaller portion

of the total execution time.

For the invalidate-based protocols, the CD-INV protocol always performs slightly

better than the DD-INV protocol and signi�cantly better than the SCI-INV protocol,

but the relative di�erence in the total execution time drops with increasing load/store

cycle count.

For the CD-UP protocol, the absolute improvement in performance compared to

the CD-INV protocol does not remain constant. The main reason for this is the

increasing execution time of the LU application as the load/store cycle count increases

(See table C.7 in appendix C). As noted in section 7.1.3, the LU application is

not stable. As the production of data slows, more consumers are able to express

their interest in the data before it is produced in the LU application. For the CD-

UP protocol this results in more update tra�c and longer update latencies as the

load/store cycle count increases. Once the load/store cycle count reaches 6, the extra
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tra�c is enough to signi�cantly increase the execution time of the application. The

increase is large enough to increase the average execution time of the CD-UP protocol

across all applications compared to that of the CD-INV protocol. But once word

synchronization is introduced, the extra tra�c and update latency can be tolerated.

In this case, the absolute performance gain of the CD-UP-WS protocol is almost

constant across all load/store cycle counts.

The DD-UP protocol with block synchronization performs about the same as the

DD-INV protocol across all load/store cycle counts. For the DD-UP protocol with

word synchronization, the absolute improvement also remains almost constant with

increasing load/store cycle count.

Overall, the percentage decrease in execution time from the update-based protocols

is dependent on the total percentage of the execution time spent accessing shared data.

If the majority of an application's execution time is spent computing or accessing

private data, then the choice of cache coherence protocol will have little impact on

the total execution time. But, as processors become more superscalar and load/store

limited and systems increase in size, the latency of shared data accesses will be a

signi�cant portion of the total execution time. Thus, the selection of a cache coherence

protocol will be an extremely important choice.

7.1.7 Summary

Studying the sensitivity of the protocols to architectural parameters is di�cult. When

a parameter is changed, the resulting actions taken by a protocol may be di�erent.

For example, when the network bandwidth was increased in the CD-INV protocol,

the execution time actually increased because the change allowed more consumers in

the LU application to request the data before it was produced. Changes also a�ected

the performance of other parts of the system. The best example is how increases in

the cache and directory access times actually reduced the latency of other packets

through the network. The increase in the cache and directory latencies reduced their

o�ered bandwidth back into the system, and in the cases where the backup at the

cache and directory did not spill over into the rest of the system, the reduction in the
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tra�c rate resulted in faster packet transfer in the remainder of the system.

But overall, the results follow what was expected. The distributed directory pro-

tocols were more sensitive to increases in the cache access time. The centralized

directory protocols were more sensitive to the directory access time, although the

sensitivity was minimal. The update-based protocols were more sensitive to the net-

work bandwidth compared to the CD-INV and DD-INV protocols. The extra co-

herence operations generated by the SCI-INV protocols made it extremely sensitive

to both the network bandwidth and latency. The update-based protocols were less

sensitive to the network latency because they required fewer hops to transfer data

between the producer and consumer. Word synchronization reduced the sensitivity

of the update-based protocols to the network parameters. The scheme reduced the

amount of tra�c generated and allowed early consumption of data to hide portions

of the update latency of subsequent words.

7.2 Migratory Data

Migratory data is data that migrates from processor to processor during program

execution. A good example is a database. In a database, a particular piece of data

may be required by many di�erent processors. Assuming that the total data working

set �ts into the processor caches, then each piece of migratory data may eventually

reside in almost all caches. In an invalidate-based system, each time the data is

modi�ed all other cached copies of the migratory data will be invalidated (or purged)

from the remote caches. If the modi�cation rate is high, the number of migratory

copies will remain small. But in update-based protocols, there is no mechanism to

purge the migratory copies. When a processor modi�es a piece of migratory data, all

other copies must be updated. After a long enough period of time, a piece of data

may reside in all caches. Now each write must update all copies. The resulting tra�c

and congestion would result in extremely poor system performance.

In this section, the performance of update-based protocols is examined for applica-

tions with migratory data. First, the performance of the MP3D migratory application

is examined. The low rate of data migration in MP3D motivates the need for the
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Figure 7.7: Relative Execution Time for MP3D

synthetic migratory data application (TASK). The details of both applications are

presented in appendix B. The performance analysis of the protocols demonstrates

the di�culties that update-based protocols have with migratory data, but a simple

replacement scheme is presented which allows systems with update-based protocols

to purge migratory data.

7.2.1 MP3D Application

Figure 7.7 shows the relative execution time of the protocols for the MP3D applica-

tion. The graph shows that the update-based protocols using block synchronization

perform signi�cantly better than the invalidate-based protocols, but from the discus-

sion in the previous section, the extra tra�c created by the updates of the migratory
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data should signi�cantly degrade the performance of the update-based protocols. The

problem is that for this application, the data migration rate is too low to be simulated

within a reasonable amount of time. The average rate of migration after 20 iterations

was only 4 caches with a maximum of 19. This amount of migratory data was too

small to have much impact on the performance of the update-based protocols.

7.2.2 Synthetic Task Application

To examine the impact of migratory data on update-based protocols the rate of data

migration must be extreme with respect to the cache line replacement rate and the

total amount of migratory data must also be a large fraction of the of shared data.

Therefore, a synthetic application that could be simulated signi�cantly faster than

MP3D, but still had the same basic characteristics of MP3D, was required. The

details of the application are presented in Appendix B.

Figure 7.8 shows the performance of the centralized directory invalidate-based

protocol (CD-INV) and the two update-based protocols CD-UP and DD-UP with the

hardware-based write grouping. The x-axis is the step number of the iteration of the

application, and the y-axis is the relative execution time compared to the execution

time of the CD-INV protocol for the �rst time step. The graph demonstrates the

performance problems of the update-based protocols for applications with migratory

data.

For the DD-UP protocol, the execution time increased almost exponentially with

the step number. During each step of the application, the shared data migrated

throughout the system. In this distributed directory protocol, the length of the

shared list of cache increased with each new cache that the data migrates to. After

only a few steps, the update latency dominated the execution time. At about the

200th step, the average update had to traverse a list of over 50 caches. The resulting

execution time was more than 6 times that of the CD-INV protocol. For the CD-UP

protocol, the performance loss was not as severe as the DD-UP protocol. In the CD-

UP protocol, the updates are sent out in parallel. In this case, the extra updates did

not directly increase the latency of the updates, rather they increased the tra�c and
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network congestion. After 500 steps, the CD-UP protocol took almost twice as long

to execute as the CD-INV protocol.
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Figure 7.8: Relative Execution Time for TASK Application

Replacement Scheme

To improve the performance of the update-based protocols for applications with mi-

gratory data, a scheme to purge migratory data is required. The scheme should

mimic the invalidate-based protocol's inherent ability to purge the migratory data

from remote caches whenever a cache modi�es the data.

A scheme similar to the one used in adaptive protocols on bus based systems can

be used [46]. First, a small counter is added to each cache line. Every time the cache

receives an update packet, the counter is incremented. Every time the local processor

accesses the cache line, the counter is reset. Once the counter reaches it maximum

count, the line is replaced out of the cache as if it were being replaced due to a con
ict

miss in the cache. Currently, the maximum counter is set to four. If the cache line
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receives four updates without any local processor accesses, the line will be replaced.

The update-based protocols use the write grouping scheme presented in chapter 5.

Therefore, each update is a grouped update of many words. The scheme assumes no

knowledge of the application access pattern. A line could be replaced a cycle before

the local processor decided to use it.

Figure 7.9 shows the performance improvements when the replacement scheme is

added to the update-based protocols. For the DD-UP protocol the improvement is

signi�cant. Purging the migratory data signi�cantly reduced the length of the list

of cache that each update must traverse. As noted above, this latency dominated

the execution time of the application when this protocol was used. For the CD-

UP protocol, the improvement in performance was not as signi�cant. The extra

tra�c introduced by the migratory data increased the network congestion. Once the

tra�c level was decreased to the point that congestion was not a problem, then the

performance of the CD-UP protocol could not be improved signi�cantly by purging
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more copies of the migratory data.

Figure 7.10 shows the average number of caches updated on each write for each

iteration. For the update-based protocols without the replacement scheme, the num-

ber of updates quickly approaches the maximum number of 63 caches. Thus, this

application is indeed a worst case migratory application because every cache is being

updated on each write during the last 100 or so iterations.

The �gure also demonstrates the ability of the replacement scheme to limit the

number of updates. With a replacement after every four updates and a 50% prob-

ability of each consumer modifying the line, the number of caches updated tended

to remain around eight caches. Increasing the probability of a write to 100% would

reduce the average to four, but the total update tra�c would stay about the same.

Every iteration a write would update four caches where in the original case a write
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would update eight caches every other iteration. As the write rate drops even fur-

ther, the total update tra�c would tend to stay about the same as more cache were

updated less frequently.

Even with the replacement scheme, the CD-INV protocol still outperforms the

update-based protocols. The CD-UP protocol came within 11% of the CD-INV pro-

tocol. In this synthetic application, the data migration and write rate were high. In

the invalidate-based protocols, each data write would purge all other copies. The

next processor to access the data would fetch the data from the writer's cache. With

a 50% chance of modifying the data, the average number of readers between writers

was one. Therefore, the CD-INV protocol operated very e�ciently for this type of

application.

For the update-based protocols the replacement count had to be greater than one.

If it were one, then the line would be replaced on the �rst update. The update would

be acting as an invalidation of the line, but the extra tra�c would result in the update

acting as a rather ine�cient invalidation. Based on simulation results not presented

here, a replacement count of four was deemed to be the smallest count that could be

used with a variety of migratory applications without adversely a�ecting performance

of those applications with a lower migratory data write rate.

Overall, an arti�cial replacement scheme may allow update-based protocols to

perform much better for applications with migratory data. But for applications with

a signi�cant amount of migratory data, e�cient invalidate-based protocols such as the

CD-INV protocol will tend to perform better. As the amount of migration decreases

and the number of unnecessary updates decrease, update-based protocols will improve

the performance of the applications when compared to the invalidate-based protocols.

The MP3D application examined in the last section is a typical example. In this case

the gains from update-based protocols outweighed the performance loss from the less

frequent migratory data updates.



Chapter 8

Conclusions and Future Work

A cache coherence protocol must provide a correct, low-cost and e�cient implemen-

tation of a shared-memory abstraction for a multiprocessor system. For scalable

systems, the protocols require a directory structure and the ability to send protocol

level messages between nodes. This work has demonstrated that update-based proto-

cols can be designed to be correct, low-cost and more e�cient than invalidate-based

protocols for a set of �ne-grain scienti�c applications.

8.1 Correctness

The correctness of a protocol with respect to a memory consistency model is an

absolute. Essentially, a correct protocol will guarantee that the processors have a

consistent view of memory, where the exact meaning of consistent is determined by

the memory consistency model used. The sequential consistency model requires that

all memory accesses appear atomic. This model forces a total ordering on a set of

distributed writes [52]. The weaker memory consistency models require that each

node only maintains the ordering of accesses that they issue [38, 22, 33]. These

weaker models simplify the protocols.

The protocols must also be deadlock free. Protocol level deadlock results because

of �nite bu�ering in the system. Two possible solutions were described in chapter

3. The �rst scheme required a timeout mechanism and packet exceptions to avoid

157
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deadlock. As demonstrated in the description of the update-based protocols, the

exceptions may add complexity to the protocols. The other solution, extending the

queues into local memory, does not increase the complexity of the protocols, but may

a�ect performance as the number of outstanding requests must be limited to avoid

over
owing the additional bu�er space preallocated in memory.

The protocols must also be free of livelock. Livelock results when a protocol level

request is continually circulated in the system and forward progress is not maintained.

In the protocols described in this work, livelock may occur when a request is bounced

back to the sender to be retried. The request may be bounced back every time the

destination receives it because some other intervening request changed the state of

the line. Although very unlikely, the occurrence is still a possible source of problems.

The directory structure may also add to the complexity of the protocols. In the

centralized directory scheme, a request sent between a directory and cache will always

traverse the same path, assuming an in-order network. In the distributed directory

scheme, the path between the directory and a cache is only stable when the list is

stable. Every time the list changes, the path between the directory and each cache

may also change. The design of the DD-UP protocol in chapter 3 demonstrated the

additional complexities that a distributed directory may add to the protocol.

Overall, the simpler a protocol is, the more likely it is correct. As was demonstrated

in section 3.5, validating the correctness is an extremely di�cult problem. Both the

deadlock avoidance scheme and the directory structure directly impact the complexity

of a protocol.

8.2 Cost of Protocol Implementation

Another important characteristic of a cache coherence protocol is its implementation

cost. The cost of implementation is di�cult to measure. The cost of the directory

structure is one component of the implementation cost that has been examined by

many researchers [4, 39, 14, 62]. The proponents of the distributed directory protocols

argue that it is a more e�cient implementation of a directory structure as the size of

the system increases. Those in favor of centralized directory protocols have presented
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several techniques, described in section 3.1, to reduce the cost of a fully-mapped

centralized directory scheme. The scalability and cost of the directory structures is

still an open research question.

The complexity of the protocol can also in
uence the cost of implementation. The

more complex a protocol is, the more states and message types it may have. This

could easily increase the complexity of the state machines and associated bit �elds.

Unfortunately, implementation cost is not a measure that can easily be included

in the performance analysis of the protocols. As with the correctness of the protocol,

the costs of the implementations can be discussed and even quanti�ed in some cases,

but the resulting cost versus performance curve is still di�cult to describe.

8.3 E�ciency of Protocols

The �nal requirement of a protocol is that it e�ciently maintains a consistent view

of memory. The e�ciency can be measured by the amount of work, or number of

transactions, required to maintain consistency among the caches and memory.

In the applications examined, a producer produces a block of data that was shared

by one or more consumers. In the block synchronization case, the producers used a

simple synchronization event, such as a 
ag, to indicate that a given block of data was

available. Once the consumers see the 
ag change, they begin consuming the data. In

the word synchronization case, the synchronization information was combined with

the data word.

For such applications, invalidate-based protocols are reactive protocols. Assuming

that the consumers are eagerly awaiting the data, they will react to the producer's

invalidation of the synchronization 
ag. Each consumer will acknowledge the inval-

idation and each consumer will attempt to read the data block. In the centralized

directory protocol (CD-INV), the directory/memory may become a hot spot if mul-

tiple consumers request the same memory lines. In this protocol, the producer of

the data block cannot release ownership of a line to a requester unless all invalida-

tions have been acknowledged. If they have not been, then the consumer's request

is bounced back to the consumer to be retried. The distributed directory protocols
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address this problem by distributing the responsibility of satisfying the miss requests

to the previous cache that requested the line. If the line is not available, the request

is queued. It is not bounced back to the requester.

Conversely, update-based protocols are proactive protocols. A consumer is able to

express an interest in a block of data by prefetching the data (actually each line in

the data block). Then when the block is written, the producer forwards the data to

the consumers; a more controlled distribution of data. These prefetches may result

in more network tra�c, but the data prefetch can be issued far in advance of the

data production. The combination of early data prefetch and updates may signi�-

cantly reduce the protocol actions required during the critical path of the application

compared to the invalidate-based protocols.

The e�ciency or performance of a protocol is also dependent on how well other

latency reducing and tolerating techniques can be used in conjunction with the pro-

tocol. Data prefetch was e�ective for both classes of protocols. The invalidate-based

protocols could use write-prefetching to hide a signi�cant portion of any data invali-

dation latency, but the protocols could only use read prefetch to overlap read requests.

Each consumer was forced to wait until the synchronization point was reached before

issuing the data prefetches. As noted above, data prefetches allowed consumers in the

update-based systems to express an interest in data before it was produced. In these

cases, the prefetch acted as a noti�cation to the producer. Both protocols classes

could take advantage of the relaxed consistency memory models. The models allowed

the protocols to overlap requests to hide a portion of the data access latency.

E�ciency of the protocols can also be measured in their sensitivity to system

parameters, as demonstrated in chapter 7. The most important observation was

the dependency of the invalidate-based protocols on the network latency. When the

latency was doubled, the performance of the protocols su�ered because the cost of the

extra network traversals began to dominate the execution time. For the update-based

protocols, the write grouping scheme reduced the network tra�c, but the performance

of the protocols still improved with increasing network bandwidth. This improvement

indicates that tra�c was still a problem, but the addition of write grouping and

word synchronization resulted in update-based protocols that were able to reduce
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and tolerate a signi�cant portion of the update latency.

The sensitivity to the characteristics of the applications is also important. The

applications were characterized by the line utilization and the number of consumers.

The e�ciency of the updates were originally determined by the line utilization. For

low line utilizations, single word updates were more e�cient than line transfers. For

high line utilization, the line transfers were more e�cient. But once write grouping

was introduced, the grouped writes were always more e�cient than line transfers. The

number of consumers had the largest impact on the distributed directory protocols.

In the distributed directory, invalidate-based protocols, a portion of the write invali-

dation latency, which was dependent on the length of the shared cache list, could be

hidden. But in the distributed-directory, update-based protocol (DD-UP), the up-

date latency dominated the execution time of the application when the list of caches

was long. The introduction of the word synchronization scheme reduced this depen-

dency because consumers could begin consuming data as soon as it arrived rather

than waiting for all updates to propagate through the list before the synchronization

event could be reached.

The TASK application with migratory data demonstrated how unnecessary up-

dates can reduce the e�ciency of the update-based protocols. In the CD-UP pro-

tocol, the extra updates resulted in more network tra�c, but the extra updates in

the DD-UP protocol resulted in a longer execution time since each update had to

traverse a continually growing list of caches. The suggested replacement scheme was

able to limit the number of sharers of each data word and, therefore, the number of

updates required. In the CD-UP protocol, this reduced the tra�c enough to allow

the performance of the protocol to approach that of the CD-INV protocol, but even

a modest list of caches still prevented the DD-UP protocol from performing well.

8.4 Summary

Overall, this dissertation has demonstrated that a correct, low-cost and e�cient

update-based protocol could be designed such that it could signi�cantly outperform

the best high-performance invalidate-based protocols. The CD-UP protocol o�ered
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the simplest and most e�cient protocol, but the actual cost of the directory is still

open to debate. If schemes to limit the size of the directory, such as a sparse directory,

perform well across a wide range of application, then the CD-UP protocol is the best

performing protocol of the �ve protocols examined.

An update-based protocol is essentially another latency tolerating and reducing

technique. The proactive nature of the protocol allows the programmer to reduce the

latency to obtain shared data. But as with other latency tolerating techniques, it

must be used correctly to obtain the possible gains in performance. Simply changing

the underlying protocol in a system will not result in the performance gains observed

in this work. The consumers must prefetch the data or no data updates will occur.

A write grouping technique must also be employed to reduce the network tra�c

generated by the protocols, and a word synchronization scheme is essential if the

system is to take full advantage of the updates. The application must also minimize

unnecessary data updates which result from false sharing or intermediate results.

8.5 Future Work

Future work should look at expanding the application set and examining other node

architectures. This dissertation examined a set of �ve �ne-grain scienti�c applica-

tion. The analysis should be expanded to include other classes of applications in-

cluding commercial applications. The system node used to simulate the protocols

was a loosely coupled cache, memory and network interface connected by two logical

networks (reply and request). Future work might examine the performance of the pro-

tocols on a more tightly integrated system such as the architecture of the Alewife [3]

or Flash [50] systems. These systems combine the cache and directory controller into

a single unit with a bu�ered interface to the memory. The system should also explore

how the di�erent protocol deadlock avoidance schemes impact the performance of the

protocols.
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Scienti�c Applications

A.1 Multifrontal Solver (MF)

A.1.1 Algorithm

The Multifrontal solver applies Gaussian elimination to a sparse N by N matrix A

such as the matrix shown in �gure A.1. Since the matrix is sparse, application of the

Gaussian elimination update for pivot row k

aij = aij � akj � aik=akk

for column j, in which akj = 0, will not a�ect elements in column j. Therefore,

pivoting by row j will be independent of the pivot by row k. Applying this test, a

dependency tree can be created for the pivot operations [23]. At any given time, all

leaf nodes of the dependency tree can be performed in parallel. For the example in

�gure A.1a, the dependency tree in �gure A.1b can be constructed. Since element a1;2

is zero, the pivot operation using pivot row 1 will not modify a2;2. Therefore, the pivot

using row 2 can be done in parallel with the pivot using row 1. These independent

pivot operations can be compacted into dense matrices by removing columns where

aik = 0 and rows where akj = 0. The �nal value for each element is given by

aij = aij �
k<NX

akj 6=0;k=i+1

akj
aik

akk
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Figure A.1: Sparse Matrix and Dependency Tree for Multifrontal Solver

which is the original value minus each update term.

Figure A.2 shows how the nodes in the example can be compacted. For example,

the pivot by row 5 can be compacted by eliminating all columns and rows that are

zero in row or column 5. This results in the 2x2 matrix shown at the top of the �gure.

The pivot by row 5 will create one of the Gaussian update terms needed to compute

a11;11. This update term will be needed by the parent node.

A.1.2 Implementation

In the shared memory implementation, the dependency tree is precomputed and the

nodes are statically allocated to processors. The shaded grouping of nodes in the

�gure A.1b represents the sets of nodes that would be allocated to the same processor

in this simple example. If a node had multiple children, the child with the largest

shared data update was grouped with the parent to reduce network tra�c.

Each processor starts with its leaf nodes. The shared update terms are computed

and written to a known shared bu�er, which is allocated in the parent node's local

memory. The processors then start to move up the tree, reading and combining the
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Figure A.2: Dense Submatrices and Update Data Flow

necessary update information from the children nodes. Once all the updates have

been combined, dense Gaussian elimination is performed on the dense submatrix and

the results are written to the proper bu�er where they are then consumed by the

parent node.

Table A.1 summarizes the characteristics of the multifrontal solver application.

Each data block was consumed by one consumer, and the dense nature of the shared

data resulted in very high line utilization.

The MF application has two distinct phases of operation [59]. Initially, the ap-

plication exhibits large amounts of parallelism in the computation of independent

submatrices. As the computation continues, the number of independent submatrices

decreases, at which time each submatrix can be computed using a parallel LU tech-

nique. Therefore, to maintain a reasonable load balance, the computation was limited

to the �rst 512 submatrices of the total 589 submatrices obtained from decomposing

the 1000 x 1000 data matrix.
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MF Application

Sparse Data Set 1000 x 1000 (95% Sparse)
Avg. Consumers per Block 1.0 Consumer
Line Utilization 93.0 %
Synchronization Type Flag
Iterative No
Private Loads/Stores 297,608
Shared Loads 16,519
Shared Stores 55,248
Synchronization Events 512
Total Cycles 598,235

Table A.1: Characteristics of Multifrontal Solver Application

A.2 Simple Iterative PDE Solver (PDE)

A.2.1 Algorithm

In the PDE application, the voltage and current through a set of cross-coupled, lossy

lines on a resistive ground in an integrated circuit are simulated. The relationship

between the current and voltage is

I = C
dV

dt
:

The area under simulation is divided into a mesh as shown in �gure A.3. At each

time step k, the current through each point (i; j) is dependent on the voltage at the

point and its four nearest neighbors, and the voltage at each point is dependent on

the voltage at the point during the last time step, the capacitance at the point and

the current through the point.

Ii;j;k = f(Vi�1;j�1;k; Vi�i;j+1;k; Vi+1;j�1;k; Vi+1;j+1;k; R)

Vi;j;k+1 = Vi;j;k +
dt

C
Ii;j;k

This function is repeated for many iterations until the desired data accuracy is

obtained. This application has a SOR-like data sharing pattern.
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Figure A.3: PDE Solver Mesh

A.2.2 Implementation

In the shared memory implementation, the mesh is divided into 32 by 32 submeshes.

The mesh was divided into equal sections and randomly allocated to the processors1.

For a 64 processor system, each processor was responsible for a 4x4 mesh. At each

time step, the processors exchanged values with its four neighboring processors. Two

shared bu�ers were used for each pair of processors. On one iteration, a processor

would write into one bu�er and read from the other. On the next iteration, the roles

of the bu�ers would be swapped. A total of �ve iterations were performed.

Table A.2 summarizes the characteristics of the PDE application. The �ve itera-

tions resulted in 1120 blocks of 4 complex words each that were exchanged between

a single producer and consumer pair. The small block size resulted in a low line

utilization.

1Although the mesh shown is a regular mesh, a more likely scenario would be a irregular mesh

which could not be allocated in such a uniform manner. Random allocation is an attempt to mimic

such an irregular layout.
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PDE Application

Dense Data Set 32 x 32
Ave. Consumers per Block 1.0 Consumers
Line Utilization 50.0 %
Synchronization Type Flag
Iterative 5 Iterations
Private Loads/Stores 238,060
Shared Loads 8,960
Shared Stores 10,080
Synchronization Events 1,120
Total Cycles 626,961

Table A.2: Characteristics of PDE Application

A.3 Sparse Cholesky Decomposition (SPCF)

A.3.1 Algorithm

If a matrix A is symmetric and positive de�nite, Cholesky factorization can be used

to factor the matrix into

A = LLT ;

where L is a lower triangular matrix. Once the factorization is complete, forward and

backward substitutions are required to solve the system. The original matrix A can

be factored into LLT by applying the following set of equations.

ljj =

vuutajj �
j�1X
k=1

l2jk

lij = (aij �
k<jX
k=1

ljklik)=ljj i = j + 1; : : : ; n

These equations can be implemented using a left-looking (column-Cholesky) approach

or with a right-looking (submatrix-Cholesky) approach.

If the data matrix is sparse, many of the entries will be zero. If ljk = 0, then the

update of column j by column k will not contribute to the update and can be skipped.
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The higher the sparsity of the data, the fewer update columns will be needed for each

column updated.

A.3.2 Implementation

A left-looking approach was chosen to compute L. In the left-looking algorithm, each

column j of L is computed by combining columns from the left. The columns were

distributed evenly among the processors and stored locally.

Figure A.4 shows the data 
ow to produce column j of L. Applying the above

algorithm requires data from columns to the left of column j for rows below row j.

Since A is a sparse matrix, some elements of L will remain zero. If lji is zero, then

column i is not required to calculate column j of L since column i of L is multiplied

by lji before being summed into column j. The amount of data needed to compute

each column is data set dependent.

Table A.3 summarizes the characteristics of the Cholesky factorization application.

The sparsity of the data set, from the Harwell-Boeing data set [24], resulted in very

small data blocks that were read by very few consumers and had a very low line

utilization.
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SPCF Application

Sparse Data Set 1138 x 1138 (98% Sparse)
Ave. Consumers per Block 1.9 Consumers
Line Utilization 11.2 %
Synchronization Type Flag
Iterative No
Private Loads/Stores 125,603
Shared Loads 10,357
Shared Stores 3,256
Synchronization Events 2,118
Total Cycles 2,236,441

Table A.3: Characteristics of Cholesky Factorization Application

A.4 3D PDE Solver using FFTs (3DFFT)

The 3DFFT application, from the NAS Parallel Benchmark set [9], solves a set of

partial di�erential equations (PDE) using forward and inverse fast Fourier transforms

(FFT).

A.4.1 Algorithm

The algorithm, as described in [9], is as follows. Consider the PDE

t@u(x; t)

@t
= �r2u(x; t)

where x is a position in 3-dimensional space. When a Fourier transform is applied to

each side, this equation becomes

@v(z; t)

@t
= �4��2jzj2v(z; t)

where v(z,t) is the Fourier transform of u(x; t). This has the solution

v(z; t) = e�4��
2jzj2tv(z; 0)

Now consider the discrete version of the original PDE. Following the above, it can

be solved by computing the forward 3-D discrete Fourier transform (DFT) of the
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3DFFT Application

Dense Data Set 8 x 8 x 16
Ave. Consumers per Block 4.0 Consumers
Line Utilization 50.0 %
Synchronization Type Barrier
Iterative 3 Iterations
Private Loads/Stores 480,640
Shared Loads 14,336
Shared Stores 18,944
Synchronization Events 12
Total Cycles 2,716,459

Table A.4: Characteristics of 3DFFT Application

original state array u(x; 0), multiplying the results by certain exponentials, and then

performing an inverse 3-D DFT.

A.4.2 Implementation

The actual implementation is also taken from the description in [9], and it is repeated

here. Assume that the data in the input n1 x n2 x n3 complex array A is organized so

that for each j and k, all elements of A (Ai;j;k) are allocated at a single memory node.

First perform an n-point 1-D FFT on each of the n2n3 complex vectors by copying

the shared data in A into a private vector, computing the FFT and then copying

the data back to A. Transpose the matrix and repeat this process two more times as

shown in �gure A.5 to form a single iteration of the computation. This computation is

repeated for several iterations with barriers used to synchronize the data production

and consumption.

Table A.4 summarizes the characteristics of the 3DFFT application. Each data

block was consumed by a single consumer, but the rotation of the shared data block

resulted in false sharing among three other nodes.
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Figure A.5: Data Flow for Single Iteration of 3DFFT
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A.5 LU Decomposition (LU)

A.5.1 Algorithm

In many applications, the solution to the linear system of equations Ax = b must

be found for many di�erent values of b. The LU decomposition algorithm allows the

matrix A to be decomposed into two triangular matrices L and U such that

PAx = LUx = Pb:

where P is the permutation matrix, L is a lower triangular matrix with ones on the

diagonal, and U is an upper triangular matrix. This new system can then be solved

by �rst solving Ly = Pb for y using forward substitution and then solving Ux = y

for x using backward substitution [28].

A.5.2 Implementation

In the shared memory implementation, each processor is given the responsibility for

computing a set of columns of L and U . Each column of A is stored at the memory

local to the processor responsible for that column. The memory locations used for A

can also be used to store the values of U and L. A second shared matrix is used to

store the pivot row indices for each step.

All processors step through the columns of A. If the current column k is in the

set of columns that a processor is responsible for, the processor determines the best

pivot row, stores the pivot row index, swaps the necessary rows and computes the

multiplier terms. All other processors read the pivot row index, swaps the necessary

rows and apply the multipliers to each column that they are responsible for. Each

column requires the multiplier terms from all columns to the left. Figure A.6 shows

the shared data 
ow needed to compute column j of L and U . Table A.5 summarizes

the characteristics of the LU decomposition application.
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LU Application

Dense Data Set 64 x 64
Ave. Consumers per Block 31.5 Consumers
Line Utilization 59.0 %
Synchronization Type Flag
Iterative No
Private Loads/Stores 189,341
Shared Loads 89,440
Shared Stores 2,080
Synchronization Events 64
Total Cycles 4,360,869

Table A.5: Characteristics of LU Decomposition

j

Shared data needed 
to compute column j
of L and U.

Figure A.6: Data Flow For LU Decomposition

The application required the movement of a relatively large amount of data. Mul-

tipliers computed for column j were read by all columns to the right. This algorithm

resulted in large shared data blocks and a large number of consumers for each block.

The density of the data allowed for the high line utilization.
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A.6 Summary of Scienti�c Applications

Table A.6 summarizes the two characteristics, the average number of consumers and

the average line utilization, which were used in section 4.3 to de�ne the application

space.

Application Consumers Line Utilization %

MF 1 93.0
PDE 1 50.0
SPCF 1.9 11.2
3DFFT 4 50.0
LU 31.5 59.0

Table A.6: Application characteristics
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Migratory Data Applications

B.1 MP3D Particle Simulator

B.1.1 Algorithm

The MP3D application is taken from the Splash benchmarks set [63]. The description

of the application from Splash documentations is summarized here. MP3D solves a

problem in rare�ed 
uid 
ow simulations. MP3D uses a Monte Carlo method to

simulate the trajectories of a collection of molecules that are subject to collisions

with boundaries of the physical domain or other molecules. MP3D employs �ve

degree-of-freedom simulation of idealized diatomic molecules in a three-dimensional

active space. The active space is a rectangular tunnel with openings at each end and

re
ecting walls. Molecules that exit the tunnel are kept in a reservoir and are later

Exiting particles
stored in reservoir

Entering particle
taken from reservoir

Figure B.1: Data Flow For MP3D Decomposition
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MP3D Application

Dense Data Set 1024 Molecules
Avg. Consumers per Block Migratory
Line Utilization 40.0 %
Synchronization Type Barrier
Iterative 20 Iterations
Private Loads/Stores 34,218
Shared Loads 245,450
Shared Stores 232,509
Synchronization Events 120
Total Cycles 14,653,999

Table B.1: Characteristics of MP3D Application

reinserted into the tunnel. Figures B.1 shows the active space.

B.1.2 Implementation

Each processor is responsible for computing the movement of a set of molecules. The

active space is divided into unit-size cells, and molecules may only collide with other

molecules in the same cell. The results of each collision are statistically determined.

Each time step is divided into 5 basic steps: initialize, move, add reservoir-move

and reservoir-collide. The initialization step resets the appropriate variables, and in

the move step, molecules are moved and collisions are resolved. This step accounts

for over 90% of the execution time. The add, reservoir-move and reservoir-collide

steps deal with the molecules entering and exiting the tunnel and the molecules in

the reservoir.

Table B.1 summarizes the characteristics of the MP3D application.

B.2 Synthetic Task Application

In the migratory application MP3D, the data tends to migrate slowly especially in

terms of simulation time. Therefore, a synthetic migratory application was needed to
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TASK Application

Dense Data Set Single Task
Avg. Consumers per Block Migratory
Line Utilization 50.0 %
Synchronization Type Ideal
Iterative 512 Iterations
Private Loads/Stores 3,256,924
Shared Loads 280,440
Shared Stores 140,472
Synchronization Events 0
Total Cycles 20,895,173

Table B.2: Characteristics of the TASK Application

examine performance of applications with signi�cant data migration. In this synthetic

task application (TASK), each processor obtains a task from a global task queue,

operates on the task and returns the task to the task queue. A task consists of

1. Reading a line of data

2. Performing work on the data

3. Possibly modifying the data

The work time is randomly distributed with an uniform distribution between 1 and

16 cycles, and the probability of modifying the line is set at 50%. With the load/store

limited superscalar processor model, the work time can be interpreted as the number

of private loads and stores required to process each task.

The task queue has 128 tasks and the application runs until each processor has

operated on 512 tasks. The operations to add and remove tasks from the queue are

not simulated.

Table B.2 summarizes the characteristics of the synthetic TASK application.
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Tables of Relative Execution Times

C.1 Base Simulation Times

Table C.1 gives the relative execution times plotted in �gures 6.3 through 6.7. All

times are relative to the CD-INV protocol.

C.2 Sensitivity Simulation Times

Tables C.2 through C.7 present the relative execution times of each protocol for the

sensitivity studies of chapter 7. All execution times are relative to the execution time

of the base CD-INV protocol presented in chapter 6 for the respective application.

The table also gives the geometric mean of the relative execution time across all

applications for each protocol that were plotted in chapter 7.
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Applications MF PDE SPCF 3DFFT LU Mean

CD-INV 1.00 1.00 1.00 1.00 1.00 1.00
DD-INV 0.96 0.91 1.13 0.92 1.37 1.04
SCI-INV 1.11 1.44 1.74 1.61 2.61 1.63
CD-UP 1.26 0.97 0.79 1.11 2.27 1.19
CD-UP-HW 0.91 0.64 0.68 0.73 0.88 0.76
DD-UP 0.99 0.80 0.95 1.26 2.91 1.23
DD-UP-HW 0.95 0.66 0.88 0.91 2.32 1.03
CD-UP-WS 1.09 0.88 0.48 1.02 1.38 0.92
CD-UP-HW-WS 0.82 0.51 0.43 0.66 0.49 0.57
DD-UP-WS 0.92 0.76 0.57 1.20 1.15 0.89
DD-UP-HW-WS 0.86 0.52 0.51 0.72 0.45 0.60

Table C.1: Relative Execution Times

Applications MF PDE SPCF 3DFFT LU Mean

CD-INV 1.88 1.24 1.20 1.14 1.20 1.31
DD-INV 1.88 1.45 1.41 1.32 1.83 1.56
SCI-INV 1.93 2.08 2.44 2.45 3.46 2.42
CD-UP-HW 1.57 0.92 1.02 0.82 1.16 1.07
CD-UP-HW-WS 1.46 0.80 0.63 0.85 0.77 0.87
DD-UP-HW 2.09 0.99 1.35 1.08 2.90 1.55
DD-UP-HW-WS 1.93 0.96 0.78 1.02 1.21 1.12

Table C.2: Cache Access (5 Cycle) Relative Execution Times

Applications MF PDE SPCF 3DFFT LU Mean

CD-INV 1.00 1.02 1.02 1.02 1.28 1.06
DD-INV 0.98 0.91 1.15 0.93 1.31 1.05
SCI-INV 1.11 1.43 1.81 1.64 2.83 1.68
CD-UP-HW 0.91 0.64 0.70 0.73 0.84 0.76
CD-UP-HW-WS 0.82 0.52 0.44 0.67 0.48 0.57
DD-UP-HW 0.97 0.64 0.90 0.91 2.35 1.04
DD-UP-HW-WS 0.85 0.52 0.52 0.75 0.44 0.60

Table C.3: Directory Access (5 Cycle) Relative Execution Times
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Applications BW MF PDE SPCF 3DFFT LU Mean

CD-INV 1/2x 1.15 1.43 1.06 1.26 0.92 1.15
2x 0.96 0.90 0.99 0.92 1.42 1.02

DD-INV 1/2x 1.00 1.16 1.21 1.15 1.17 1.13
2x 0.95 0.85 1.15 0.85 1.32 1.01

SCI-INV 1/2x 1.19 1.75 1.90 1.99 2.76 1.85
2x 1.07 1.34 1.79 1.51 2.32 1.55

CD-UP-HW 1/2x 1.11 0.74 0.75 0.97 0.84 0.87
2x 0.82 0.60 0.66 0.64 0.62 0.66

CD-UP-HW-WS 1/2x 0.90 0.61 0.47 0.88 0.60 0.67
2x 0.77 0.49 0.42 0.58 0.55 0.55

DD-UP-HW 1/2x 1.19 0.74 1.00 1.24 3.58 1.31
2x 0.83 0.61 0.84 0.76 2.04 0.92

DD-UP-HW-WS 1/2x 1.00 0.61 0.58 1.10 0.59 0.74
2x 0.78 0.49 0.49 0.64 0.41 0.55

Table C.4: Network Bandwidth Relative Execution Times

Applications BW MF PDE SPCF 3DFFT LU Mean

CD-INV 1/2x 0.98 0.96 0.85 0.90 1.14 0.96
2x 1.10 1.50 1.84 1.65 1.28 1.45

DD-INV 1/2x 0.94 0.85 0.99 0.80 0.89 0.89
2x 1.06 1.43 2.13 1.60 2.11 1.62

SCI-INV 1/2x 1.06 1.27 1.51 1.42 1.81 1.39
2x 1.37 2.44 3.41 2.87 5.23 2.80

CD-UP-HW 1/2x 0.91 0.62 0.61 0.67 0.79 0.71
2x 0.95 0.87 1.16 1.03 1.22 1.04

CD-UP-HW-WS 1/2x 0.80 0.52 0.39 0.62 0.47 0.54
2x 0.86 0.54 0.72 0.87 0.69 0.73

DD-UP-HW 1/2x 0.93 0.61 0.78 0.85 2.15 0.96
2x 1.07 0.80 1.45 1.31 3.74 1.44

DD-UP-HW-WS 1/2x 0.84 0.52 0.46 0.70 0.46 0.58
2x 0.92 0.55 0.88 0.99 0.61 0.77

Table C.5: Network Latency Relative Execution Times
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Applications SPCF 3DFFT LU Mean

CD-INV 1.00 1.00 1.22 1.07
CD-UP-HW 0.70 1.45 1.17 1.06
CD-UP-HW-WS 0.44 1.49 0.65 0.75

Table C.6: Relative Execution Times Without Multicast
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Applications Cycles MF PDE SPCF 3DFFT LU Mean

CD-INV 1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.50 1.36 1.17 1.13 1.20 1.26
4 2.68 2.04 1.53 1.46 1.58 1.81
6 3.92 2.81 1.88 1.83 1.66 2.29
8 5.15 3.54 2.25 2.20 2.04 2.84

DD-INV 1 0.96 0.91 1.13 0.92 1.37 1.04
2 1.47 1.24 1.31 1.05 1.52 1.31
4 2.66 1.95 1.69 1.38 1.84 1.86
6 3.90 2.71 2.02 1.75 2.32 2.44
8 5.13 3.44 2.38 2.13 2.52 2.96

SCI-INV 1 1.11 1.44 1.74 1.61 2.61 1.63
2 1.62 1.76 1.97 1.75 2.31 1.87
4 2.80 2.44 2.34 2.06 3.53 2.59
6 4.03 3.12 2.66 2.41 4.08 3.19
8 5.27 3.83 3.01 2.74 4.04 3.68

CD-UP-HW 1 0.91 0.64 0.68 0.73 0.88 0.76
2 1.48 1.00 0.82 1.11 1.05 1.07
4 2.69 1.75 1.12 1.33 1.29 1.55
6 3.93 2.60 1.47 1.58 2.90 2.33
8 5.15 3.32 1.79 1.85 3.04 2.80

CD-UP-HW-WS 1 0.82 0.51 0.43 0.66 0.49 0.57
2 1.38 0.89 0.55 0.95 0.54 0.81
4 2.58 1.66 0.84 1.25 0.68 1.25
6 3.80 2.45 1.14 1.59 1.44 1.89
8 5.00 3.21 1.43 1.99 1.38 2.29

DD-UP-HW 1 0.95 0.66 0.88 0.91 2.32 1.03
2 1.44 1.02 1.01 1.29 2.60 1.38
4 2.65 1.75 1.27 1.46 2.76 1.88
6 3.87 2.57 1.63 1.71 3.23 2.46
8 5.09 3.29 1.92 1.98 3.13 2.88

DD-UP-HW-WS 1 0.86 0.52 0.51 0.72 0.45 0.60
2 1.36 0.90 0.64 1.05 0.66 0.88
4 2.56 1.66 0.91 1.33 1.03 1.40
6 3.75 2.44 1.22 1.67 1.36 1.91
8 4.96 3.22 1.51 2.03 1.56 2.38

Table C.7: Processor Load/Store Cycle Count
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