

Hardware-assisted Algorithms for Checkpoints

Dwight Sunada
David Glasco1

Michael Flynn

Technical Report: CSL-TR-98-756

July 1998

1Dr. David Glasco is affiliated with the Austin Research Laboratory at International Business Machines, Inc.

 Hardware-assisted Algorithms for Checkpoints

Dwight Sunada
David Glasco

Michael Flynn

Technical Report: CSL-TR-98-756

July 1998

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
William Gates Building, A-408
Stanford, California 94305-9040

<e-mail: pubs@shasta.stanford.edu>

Abstract

We can classify the algorithms for establishing checkpoints on distributed-shared-memory multiprocessors (DSMMs)
into 3 broad classes: tightly synchronized method (TSM), loosely synchronized method (LSM), unsynchronized
method (USM). TSM-type algorithms force the immediate establishment of a checkpoint whenever a dependency
between 2 processors arises. LSM-type algorithms record this dependency and, hence, do not require the immediate
establishment of a checkpoint if a dependency does arise; when a processor chooses to establish a checkpoint, the
processor will query the dependency records to determine other processors that must also establish a checkpoint.
USM-type algorithms allow a processor to establish a checkpoint without regard to any other processor. Within this
framework, we developed 4 hardware-based algorithms: distributed recoverable shared memory (DRSM), DRSM for
communication checkpoints (DRSM-C), DRSM with a hybrid method (DRSM-H), and DRSM with logs (DRSM-
L). DRSM-C is a TSM-type algorithm, and DRSM and DRSM-H are LSM-type algorithms. DRSM-L is a USM-
type algorithm and is the first of its kind for a tightly-coupled DSMM where hardware in the form of a directory
maintains cache coherence. We find that DRSM has the best performance in terms of minimizing the impact of
establishing checkpoints (or logs) on the running applications, but DRSM along with DRSM-C has the most
expensive hardware requirements. DRSM-L has the second best performance but has the least expensive hardware
requirement. We conclude that DRSM-L is the best algorithm in terms of cost and performance.

Key Words and Phrases : algorithm, checkpoint, fault tolerance, hardware, distributed recoverable shared
memory (DRSM), DRSM for communication checkpoints (DRSM-C), DRSM with a hybrid method (DRSM-H),
DRSM with logs (DRSM-L)

Copyright (c) 1998
Dwight Sunada, David Glasco, Michael Flynn

1
I. Introduction

The current direction of high-performance computing points towards
distributed-shared-memory multiprocessors (DSMMs). Most of the research into
these systems focuses on increasing the speed of the DSMM in executing
applications. We focus on the different but equally significant issue of
increasing the reliability of DSMMs while maintaining their high speed of
execution. Reliability is the key to proliferating these systems in
commercial businesses.

There are 2 categories of DSMMs: (1) collection of workstations loosely
coupled by a general network on which specialized software maintains the
coherence of memory accesses and (2) collection of processor boards tightly
coupled by a dedicated network on which specialized hardware maintains the
coherence of memory accesses. We select to investigate the second category of
DSMMs, for they represent the highest level of performance that is available
in computing.

Increasing reliability on such tightly-coupled DSMMs requires that we build
fault tolerance into the system. Fault tolerance has 2 aspects: establishing
checkpoints (or logging data) and rolling the system back from a fault to the
last saved checkpoint. Establishing checkpoints has the greater impact on
performance as this activity continuously consumes cycles even in a system
that experiences no faults. Rolling the system back from a fault occurs
rarely in well-built DSMMs (as they should be reliable) and hence has little
impact on performance.

In our research, we classify checkpoint algorithms into 3 broad classes:
tightly synchronized method (TSM), loosely synchronized method (LSM), and
unsynchronized method (USM) [6]. In the TSM, a processor immediately
establishes a checkpoint when a dependency on that processor arises. Examples
of TSMs are algorithms for communication-induced checkpoints [1][5][13]. In
the LSM, a processor need not immediately establish a checkpoint when a
dependency arises, for the system simply records the dependency. Eventually,
if a processor does establish a checkpoint (due to the expiration of a timer,
for example), the processor looks at the records of dependencies to determine
all other processors that must establish a checkpoint as well. An example of
a LSM is the scheme proposed by Banatre [2]. In the USM, a processor
establishes a checkpoint regardless of when any other processor establishes a
checkpoint. The processor achieves this flexibility by logging the data
retrieved from memory and re-using this data to satisfy cache misses during
roll-back from a fault. To the best of our knowledge, algorithms for USM
currently exist only for software-based loosely-coupled DSMMs [7][10].

In the remainder of this paper, we describe 4 hardware-based algorithms that
we developed for establishing checkpoints. In section II, we describe the
multiprocessor simulator (MPS) on which we simulate our hardware. In section
III, we briefly discuss the virtual machine monitor (VMM). VMM is the piece
of software which must be programmed to be aware of our hardware-based
algorithms. In section IV, we present our assumptions about the hardware on
which we propose to implement our 4 algorithms. In section V, we present 1
LSM-type algorithm: distributed recoverable shared memory (DRSM). In section
VI, we present 1 TSM-type algorithm: DRSM for communication checkpoints (DRSM-
C). Then, we attempt to improve on DRSM by removing 1 of the memory banks to
create DRSM with a hybrid method (DRSM-H). We present DRSM-H in section VII.
In section VIII, we present a USM-type algorithm: DRSM with logs (DRSM-L).
DRSM-L is the first of its kind for USM on a hardware-based tightly-coupled

2
DSMM. To round out our discussion of the algorithms, we briefly discuss the
issue of recovery in section IX. In section X, we discuss some issues
concerning our implementation of these algorithms in our ABSS simulation
environment. In section XI, we present the results of executing 6 benchmarks
on our MPS modified for each of the algorithms. We conclude the paper in
section XII.

Two principal aspects distinguish our work from previous work in this area.
First, previous work uses rather different assumptions about the fault-
tolerant hardware. For example, Wu proposes an algorithm for TSM and assumes
that all the caches are fault tolerant, but Banatre assumes that the caches
are not fault tolerant in his algorithm for LSM. Comparing 2 algorithms using
markedly different hardware assumptions is questionable as the cost of those
assumptions may cause a seemingly high-performance algorithm to be too
expensive to implement. In our work, we make a uniform assumption across all
the algorithms; namely, we assume only that the network and memory modules are
fault tolerant but that the processor and its caches can fail. Second, we
analyze in detail the performance of our algorithms by using a MPS that
precisely simulates the operation of the cache and memory at the clock-cycle
level.

II. Simulation Environment

A. Multiprocessor Simulator

The MPS on which we implement the 4
algorithms is the SPARC-based
multiprocessor simulator called ABSS
[9]. It contains a thread module but
does not have code to simulate either
caches or memory. In order to simulate
these structures, we extract the
simulator of the memory system from
SimOS [4] and write a C-language
interface to hook the memory system into
ABSS. Figure 1 illustrates the
organization of the memory system. We
specify the following parameters for the
processor and memory system in our DSMM.

Figure 1. Multiprocessor

clock rate of processor = 200 megahertz for SPARC V7
size of 1st-level instruction cache = 32 kilobytes with 4-way set associativity, 64-byte line,
 and 2 states -- INVALID, SHARED
size of 1st-level data cache = 32 kilobytes with 4-way set associativity, 64-byte line,
 and 3 states--INVALID, SHARED, EXCLUSIVE
size of 2nd-level cache = 1 megabyte with 4-way set associativity, 128-byte line,
 and 3 states--INVALID, SHARED, EXCLUSIVE
average delay (NUMA_BUS_TIME) between 2nd-level cache and directory controller (DC) = 75 cycles
average delay (SCACHE_HIT_TIME) for access that hits in the 2nd-level cache = 50 cycles
average delay (NUMA_PILOCAL_DC_TIME) in the local DC for local access = 100 cycles
average delay (NUMA_PIREMOTE_DC_TIME) in the local DC for remote access = 25 cycles
average delay (NUMA_NILOCAL_DC_TIME) in the remote DC for remote access = 350 cycles
average delay (NUMA_NIREMOTE_DC_TIME) in the remote DC for remote reply = 25 cycles
average network delay (NUMA_NET_TIME) between 2 DCs = 150 cycles
average delay to access (NUMA_MEM_TIME) memory = 50 cycles

3
Our DSMM has 8 modules, and each module has a SPARC processor, caches, and a
memory module with a directory. On the processor, each integer instruction
executes in exactly 1 cycle, and each floating-point instruction executes in a
variable number of cycles. The DSMM implements a sequential memory model,
where each access stalls until the memory system satisfies it. The cache-
coherency protocol is a write-back protocol.

Although our simulator simulates 8 processors, we use a smaller DSMM to
illustrate the description of our 4 hardware-assisted algorithms for
establishing checkpoints. This smaller DSMM has 4 modules, where each module
has a processor and a memory module with a directory.

B. Timing

Figure 1 shows the timing for the path which application-read and application-
write accesses take. As an illustration, consider a read miss by processor 1
to a remote memory address for which processor 2 still holds the dirty copy of
data; the memory address is remote to both processors. The read access misses
in the 1st-level cache and progresses to the 2nd-level cache. Since it cannot
satisfy the access, it incurs a delay of "NUMA_BUS_TIME" to travel on the
local bus to the directory controller (DC). It places the access into the
queue. When the access moves to the front of the queue, the DC uses a delay
of "NUMA_PIREMOTE_DC_TIME" to process the access (i. e. to determine that it
must travel to a remote memory module).

The DC sends the request across the network. The read access experiences a
delay of "NUMA_NET_TIME" before arriving at the DC of the remote memory
module. The remote DC places the access into the queue. When the access
moves to the front of the queue, the DC uses a delay of "NUMA_NILOCAL_DC_TIME"
to process the access. The DC sends a write-back request to processor 2.
The write-back request uses a delay of "NUMA_NET_TIME" to travel to the DC of
processor 2. The DC places the request into the queue. When the request
moves to the front of the queue, the DC uses a delay of "NUMA_NILOCAL_DC_TIME"
to process the request and forwards a copy of the request onto the local bus
to the 2nd-level cache. The request uses a delay "NUMA_BUS_TIME" to travel to
the cache and to return with the data dirty to the DC. It then sends an
acknowledgment (containing the dirty data) of the write-back request across
the network back to the DC of the remote memory module.

The acknowledgment uses a delay of "NUMA_NET_TIME" to arrive at the DC of the
remote memory module. The remote DC places the acknowledgment into the queue.
When the acknowledgment moves to the front of the queue, the DC uses a delay
of "NUMA_NIREMOTE_DC_TIME" to process the acknowledgment. It contains a copy
of the dirty data. The DC forwards a copy of the data to the memory and
simultaneously sends a reply containing the data to processor 1. (The write-
back request to memory waits in a queue. When the request moves to the front
of the queue, the memory unit uses a delay of "NUMA_MEM_TIME" to write the
dirty data into the specified memory address.)

The reply uses a delay of "NUMA_NET_TIME" to arrive at the DC of processor 1.
The remote DC places the reply into the queue. When the reply moves to the
front of the queue, the DC uses a delay of "NUMA_NIREMOTE_DC_TIME" to process
the reply. The DC places the data contained in the reply onto the local bus.
The data uses a delay of "NUMA_BUS_TIME" to travel across the bus to the 2nd-
level cache.

C. Caches

4

The 1st-level data cache is a typical cache where each entry exists in 1 of 3
states: SHARED, EXCLUSIVE, and INVALID. ABSS handles a miss from the 1st-
level cache in the following way. ABSS selects an unoccupied entry from the
1st-level miss-handling table and enters information about the miss into the
entry. ABSS then submits the miss to the 2nd-level cache.

The 2nd-level unified cache is a typical cache where each entry exists in 1 of
3 states: SHARED, EXCLUSIVE, and INVALID. At the 2nd-level cache, if a miss
occurs, ABSS selects an unoccupied entry from the 2nd-level miss-handling
table and enters information about the miss into the entry. ABSS then submits
the miss to the memory system.

D. Memory System

The memory system receives 5 types of messages.

1. MEMSYS_GET (read miss)
2. MEMSYS_GETX (write miss)
3. MEMSYS_UPGRADE (write hit on SHARED block in cache)
4. MEMSYS_WRITEBACK (forcing dirty block out of cache)
5. MEMSYS_REPLACEMENT_HINT (forcing clean block out of cache)

Application processes directly generate only the first 3 message types:
"MEMSYS_GET", "MEMSYS_GETX", and "MEMSYS_UPGRADE". The 2nd-level cache itself
may generate either MEMSYS_WRITEBACK or MEMSYS_REPLACEMENT_HINT to free an
entry in the cache for incoming data.

III. Virtual Machine Monitor (VMM)

A. VMM and the Operating System (OS)

Establishing checkpoints requires that either the OS or the VMM cooperate with
the underlying hardware. For example, communication between the DSMM and the
external environment (e. g. a disk drive) requires that some (or all) of the
processors in the DSMM establish a checkpoint. The OS or the VMM knows when
this communication occurs and must manually tell the pertinent processors to
establish a checkpoint.

We favor regarding the OS as simply another application process and building
fault tolerance into the VMM. The VMM typically contains several thousands of
lines of code whereas the OS typically contains millions of lines [3]. Hence,
we can more easily modify the VMM. Since we separate the issue of fault
tolerance from the OS, our fault-tolerant system can run any commodity OS
without modification and still be fault tolerant.

B. VMM and ABSS

We neither build the VMM into ABSS nor simulate the communication between the
DSMM and its environment. In an actual DSMM, this communication requires that
the VMM manually initiate the establishment of a checkpoint on the pertinent
processors. The activities involved in establishing this checkpoint are
virtually identical to the activities involved in establishing a checkpoint
required by the other triggers (identified in section V-C, section VI-B,
section VII-B, and section VIII-B). So, understanding the performance impact
of the reduced set of triggers should still enable us to understand the
performance impact of the full set of triggers.

5

We focus on how our hardware-assisted algorithms (for establishing
checkpoints) impact the performance of scientific application programs. In
our simulation environment, we execute these programs directly on top of the
raw simulated hardware. The application processes supply the memory
references that drive the hardware-assisted algorithms for establishing
checkpoints.

IV. Assumptions

We assume the following.

Further, 2 identical banks of fault-tolerant memory are available. The number
of memory modules equals the number of microprocessors, but within each memory
module are 2 identical banks of memory.

Prior to each checkpoint, each block of memory has 2 copies, one being in each
of the 2 banks of memory. One copy of the block receives new data sent to it,
and the other copy is the value saved and frozen at the last checkpoint. In
other words, 1 block is the tentative checkpoint, and 1 block is the permanent
checkpoint. During the establishment of a checkpoint, the block with the
tentative checkpoint freezes its data, which becomes the permanent checkpoint,
and the block with the old checkpoint unfreezes its data, which becomes the
tentative checkpoint. After the establishment of a checkpoint, the first
access to the block with the tentative checkpoint causes the data in the
permanent-checkpoint block to be copied to the tentative-checkpoint block.

We estimate that a single bank of fault-tolerant memory costs at most twice
the price of a bank of non-fault-tolerant memory. So, 2 banks of fault-
tolerant memory cost at most 4 times the price of a bank of non-fault-tolerant
memory. Since the latter has a net cost of approximately 1/3 of the total
system cost, we estimate that the 2 banks of fault-tolerant memory costs at
most 2/3 of the total system cost.

V. Distributed Recoverable Shared Memory (DRSM)

DRSM is our first algorithm for establishing checkpoints and is a type of
loosely synchronized method (LSM). We constructed DRSM by extending
recoverable shared memory (RSM) to multiple memory modules. Banatre developed
RSM; it uses a single memory module [2].

A. Background: Recoverable Shared Memory (RSM)

1. The hardware suffers at most a single point of failure.
2. Hardware is fail-stop. If a component fails, it merely stops functioning and does not emit spurious data.
3. Each memory module, including the on-board directory controller, is fault tolerant.
4. The processor board with its caches is not fault tolerant. One spare but idle processor board is available to

replace another processor board that experiences a permanent fault.
5. A node in our DSMM can communicate with any other node via 2 independent paths in the network. A

node consists of a memory module and a processor. (In the case of DRSM and DRSM-C, each memory
module has 2 banks of memory.)

6. The VMM has fault containment and can coordinate with specialized hardware (for establishing checkpoints)
to tell a processor to establish a checkpoint if its application process receives a message from the environment
or sends a message to the environment. The VMM can also roll the DSMM back to the last checkpoint if a
fault occurs.

6
Before we describe DRSM, we first describe RSM. Figure 2 illustrates the
configuration of a RSM module. We slightly modify the explanation by Banatre
to present details that may not have appeared in the original description.

1. Dependency Matrix

The key element is the dependency
matrix, which is an array of bits. This
matrix, "DM[][]", sees all accesses that
reach the RSM module and sets the bits
according to the following checkpoint
dependencies.

The write-before-read dependency occurs
when processor "p[i]" reads a block (of
memory) that processor "p[j]" previously
wrote. The write before-write
dependency occurs when processor "p[i]"
writes a block that processor "p[j]"
previously wrote.

In terms of checkpoints, the first dependency type means that if "p[i]"
establishes a checkpoint, then "p[j]" must establish a checkpoint. The second
dependency type means that if either "p[i]" or "p[j]" establishes a
checkpoint, then the other processor must also establish a checkpoint in order
to ensure the consistency of the state of the system stored in the checkpoint
[6]. This information enables the processors to avoid the strict requirement
of establishing a checkpoint at each communication between 2 processors where
the first processor (in time) is a writer. (The algorithm for establishing
checkpoints with DRSM-C does not record this information and hence strictly
requires the establishment of a checkpoint at each communication where the
first processor is a writer.)

2. Last-Writer Indicator

The RSM module contains an additional buffer for each block of memory. This
buffer stores the last writer to the block.

3. Checkpoint Counters

The collection of global checkpoint counters contains 1 counter for each
processor in the system. Each block in memory has an associated block
checkpoint counter. When processor "P[2]", for example, writes to a block,
the value of the global checkpoint counter for "P[2]" is copied into the block
checkpoint counter. RSM updates the buffer for the last writer to "2".
The purpose of the checkpoint counters is to accelerate the establishment of
permanent checkpoints. They are explained in a later section.

4. Memory for Tentative Checkpoint

 write before read of block
 p[i] -> p[j] (expression #1)

 write before write of block
 p[i] <--> p[j] (expression #2)

Figure 2. RSM

7
The tentative-checkpoint memory (TCM) functions as the working memory. It
operates like the memory in a non-fault-tolerant system. When the RSM begins
a 2-phase checkpoint of dependent processors, they write their dirty cache
data into the TCM in the first phase. The newly updated blocks of memory form
the tentative checkpoint which is later converted into the permanent
checkpoint in the second phase.

5. Memory for Permanent Checkpoint

During the establishment of the permanent checkpoint, the RSM copies data
saved during the tentative-checkpoint phase into the permanent-checkpoint
memory (PCM). It always contains data comprising a consistent state of the
system. The DSMM rolls back to this data after a failure occurs.

6. Establishing Checkpoints

Figure 3 illustrates the establishment
of a checkpoint for a 4-processor DSMM.
A processor "P[1]" that wishes to
establish a checkpoint submits a request
to the RSM. The RSM then scans the
dependency matrix for all other
processors that must establish a
checkpoint along with "P[1]". The RSM
finds that both "P[0]" and "P[3]" must
establish a checkpoint along with "P[1]"
and hence submits a request to them to
establish a checkpoint. They write
their dirty cache data back into memory
and send a copy of their internal states
(i. e. data in the internal registers)
to the RSM. This phase is the
tentative-checkpoint phase. After it
completes successfully, the RSM converts
the tentative checkpoint into a
permanent checkpoint.

After verifying that the establishment
of the tentative checkpoint is
successful, the RSM increments the
global checkpoint counters for "P[0]",
"P[1]", and "P[3]" and then tells those
processors that they may resume
execution of their normal processes.
They send acknowledgments to the RSM,
and it resumes its normal functions.

The RSM does not immediately copy the blocks saved during the tentative-
checkpoint phase into the PCM during the permanent-checkpoint phase.
Rather, the RSM merely increments the global checkpoint counters for the
processors involved in the checkpoint. After the RSM concludes the permanent
checkpoint, if a write access occurs on a block (in the TCM) where the global
checkpoint counter of the last writer is greater than the block counter, then
the RSM knows that the current data in the block is part of a permanent
checkpoint. Hence, the RSM first copies the data from the block in the TCM
into the corresponding block in the PCM before the RSM writes the incoming new
data into the block in the TCM. This copy-on-write technique accelerates the
establishment of the permanent checkpoint by avoiding the copying of

Figure 3. Flow of Checkpoint

8
potentially millions of blocks of data from the TCM into the PCM during the
permanent-checkpoint phase.

7. New Requests after Initiating Checkpoint

If processor "P[2]" submits a request to the RSM to establish a checkpoint and
if the request arrives at the RSM before the start of the permanent
checkpoint-phase for "P[0]", "P[1]", and "P[3]", then the RSM will combine
"P[2]" into the group of processors that must establish a checkpoint together.
In other words, the RSM grants the request from "P[2]" to establish a
checkpoint and waits until "P[2]" has finished establishing its tentative-
checkpoint phase before the RSM begins the permanent-checkpoint phase of all
processors in the group: "P[0]", "P[1]", "P[2]", and "P[3]". If the request
arrives after the establishment of the start of the permanent-checkpoint
phase, then the RSM negatively acknowledges the request, and "P[2]" must re-
submit its request.

B. Hardware Overview of DRSM

We extend RSM to multiple memory modules and call our method distributed-
recoverable-shared memory (DRSM).

1. Elimination of Checkpoint Counters

DRSM eliminates the checkpoint counters that appear in figure 2. We no longer
permanently fix the roles of the 2 banks of memory. A block in bank #1 and
the corresponding block in bank #2 can be a tentative-checkpoint block and a
permanent-checkpoint block, respectively, and vice versa. We use a 3-bit
state register (3BSR) associated with each block of memory to dynamically
determine the roles of the blocks in each pair of blocks, one from bank #1 and
one from bank #2. Each 3BSR has its own tiny finite-state-machine (FSM) to
cycle among the necessary states.

Figure 4 shows the state
transitions (i. e. the role
transitions) of the blocks in
each pair of blocks of memory.
The figure shows 6 rectangles;
within each one are 2 smaller
rectangles. Among these 2
rectangles, the one on the left
represents a block from bank #1,
and the rectangle on the right
represents the corresponding
block from bank #2. The states
"[I, PC]" and "[PC, I]" are the 2
possible states in which memory
starts.

As an illustration, we start with "[I, PC]". When a read access matches the
pair of blocks with this state, DRSM services the access with data from bank
#2. A write access (i. e. MEMSYS_GETX or MEMSYS_UPGRADE) that matches this
pair of blocks causes the DRSM to copy data from the block in bank #2 into
bank #1 and then to reply to the processor submitting the memory access. The
state for the pair of blocks transitions to "[W, PC]". The DRSM services all
future memory accesses by referencing the block in bank #1.

Figure 4. Transition of State for 3BSR

9
During the establishment of the tentative checkpoint, the state of the pair of
blocks in our illustration transitions to "[TC, PC]". If the establishment of
the tentative checkpoint is successful, then the DRSM changes the state of the
pair of blocks to "[PC, I]".

2. New Organization of DSMM with DRSM

Figure 5 shows the new organization of
the DSMM with DRSM. Each DRSM module
no longer contains the checkpoint
counters. We replaced them with the
more efficient 3BSRs. The DRSM module
also has a processor state buffer
(PSB). The PSB contains 3 buffers (not
shown in figure 5). One buffer holds
the internal state of the local
processor for the tentative checkpoint,
and another buffer holds the internal
state of the local processor for the
permanent checkpoint. The third buffer
is a 2-bit checkpoint-state buffer
(CSB) and holds one of
{CHECKPOINT_IS_NOT_ACTIVE,
TENTATIVE_CHECKPOINT_IS_ACTIVE,
PERMANENT_CHECKPOINT_IS_ACTIVE},
indicating the status of the local
processor.

The structure of processor locks (PLs)
contains 1 lock per processor in the
DSMM. The DRSM module sets the PL to
"1" if, during the establishment of the
tentative checkpoint, the corresponding

processor (1) is the last writer of a dirty block (i. e. in state of "[PC, W]"
or "[W, PC]") of memory or (2) has dependent processors according to the
dependency matrix. During the establishment of the permanent checkpoint, if
an incoming memory access originates from a processor with its PL being "1",
the DRSM module negatively acknowledges that request. This action prevents a
race from developing on the dependency matrix.

One example of a race is the following. Suppose that processor "P[1]"
finishes its permanent checkpoint before a memory module "DRSM[2]" and that
"P[1]" has its PL being "1" in "DRSM[2]". Suppose that "P[3]" writes into a
memory block (in "DRSM[2]") that is not part of the checkpoint which is just
completing. Then, processor "P[1]" reads that same block before "DRSM[2]"
completes its permanent checkpoint. The dependency "P[1] -> P[3]" will be
lost when "DRSM[2]" completes its permanent checkpoint, clearing the row and
column (of the dependency matrix) containing "P[1]".

C. Conditions for Establishing Checkpoints

Two events can trigger a processor to establish a checkpoint.

Figure 5. DRSM

1. A timer expires. When the timer for a processor expires, it establishes a checkpoint. The timer ensures a
maximum bound on the time interval between checkpoints.

2. Communication occurs between a processor and the environment outside of the DSMM. When data leaves
or enters a DSMM, the processor handling the data must establish a checkpoint. Communication includes
interrupts.

10

D. Establishing Tentative Checkpoints

1. General Overview

Because there are now several
modules of RSM, we must radically
modify the algorithm for
establishing a tentative
checkpoint. Figure 6 shows the
new algorithm. Its general
strategy is that a processor
wishing to establish a checkpoint
must query all DRSM modules to
determine all dependent processors
that must also establish a
checkpoint. They, in turn, query
all DRSM modules to determine
additional dependent processors.
The process proceeds in the
fashion of an expanding tree of
processors. The root of the tree
is the processor that initially
wished to establish a checkpoint,
and the leaves of the tree are
processors that either (1) have no
checkpoint-dependent processors or
(2) have already been identified
higher up in the tree. Once the
algorithm reaches the leaves of
the tree, processors starting from
the bottom of the tree and moving
upwards toward the root send
acknowledgment messages to the
parent processor. A parent
processor must first receive

acknowledgments from all its children before that parent processor sends an
acknowledgment to its parent processor.

2. Details

As a specific example, we trace the flow in figure 6 for a 4-processor DSMM.
We arbitrarily select processor "P[0]" to act as an arbiter to allow at most
one tentative checkpoint to be established at any time. "P[1]" submits a
request to "P[0]" to obtain permission to establish a checkpoint. "P[0]"
grants the request, and "P[1]" proceeds to establish a tentative checkpoint
(in the first phase).

"P[1]" queries all the DRSM modules. They search their dependency matrices to
find all processors which must establish a checkpoint along with "P[1]". The
DRSM modules send their replies back to "P[1]". From their replies, "P[1]"
discovers that "P[0]", "P[2]", and "P[3]" must establish checkpoints. "P[1]"
tells all of them to establish tentative checkpoints. In this example,
"P[0]", "P[2]", and "P[3]" receive the request from "P[0]" at approximately
the same time (although this situation need not always arise).

Figure 6. Flow of Tentative Checkpoint

11
"P[0]" then queries all the DRSM modules to find that both "P[1]" and "P[3]"
are dependent upon it. "P[0]" asks them to establish tentative checkpoints.
Upon receiving this request from "P[0]", "P[1]", and "P[3]" both respond that
they have already joined the checkpoint tree and are, hence, leaves in this
tree.

After receiving the request from "P[1], "P[2]" then queries all the DRSM
modules to find that "P[0]", "P[1]", and "P[3]" are dependent upon it. "P[2]"
asks them to establish tentative checkpoints. Upon receiving this request
from "P[2]", "P[0]", "P[1]", and "P[3]" all respond that they have already
joined the checkpoint tree and are, hence, leaves in this tree.

Finally, after receiving the request from "P[1]", "P[3]" then queries all the
DRSM modules to find that no processors are dependent on it. Hence, "P[3]" is
a leaf in this tree. After "P[3]" completes its tentative checkpoint, "P[3]"
sends an acknowledgment back to "P[1]".

After "P[0]" completes its tentative checkpoint, "P[0]" sends an
acknowledgment back to "P[1]". After "P[2]" completes its tentative
checkpoint, "P[2]" sends an acknowledgment back to "P[1]". After "P[1]"
receives acknowledgments from "P[0]", "P[2]", and "P[3]", "P[1]" concludes the
establishment of the tentative checkpoint, which is phase #1.

Figure 6 shows the general flow in the process of establishing a tentative
checkpoint but omits 6 important details. They are the following.

1. Before a processor queries all DRSM modules (in order to determine dependent processors), it (1) waits
until all its pending cache operations are finished and (2) then writes all dirty cache data back into memory.
The processor waits for the DRSM modules to acknowledge that all the write-backs are complete.

2. Each processor sends a copy of its state (i. e. data in the internal registers) to the PSB of the DRSM
module that is local to the processor.

3. A DRSM module that receives a query (to determine dependent processors) waits until all pending
memory operations by the directory controller are finished before the DRSM module replies (with
information about dependent processors) to the querying processor. During this waiting period, the DRSM
module negatively acknowledges all requests that it receives.

4. Just before the DRSM module replies to the querying processor, the DRSM module scans for all pairs of
blocks (in the 2 banks of memory) where (1) the state of the pair is either "[W, PC]" or "[PC, W]" and (2)
the last writer is the querying processor. If such pairs exist, then the DRSM module transitions the states
from "[W, PC]" or "[PC, W]" to "[TC, PC]" or "[PC, TC]", respectively. The DRSM module negatively
acknowledges accesses to blocks for which the state is either "[TC, PC]" or "[PC, TC]". Locking out
accesses to such blocks prevents changes in the checkpoint dependencies of the processors that have almost
completed the tentative checkpoint.

5. In addition, the DRSM module sets the PL of the querying processor to "1" if (1) the module has dirty
blocks like those just mentioned or (2) the dependency matrix indicates that the querying processor has
dependent processors. The DRSM module negatively acknowledges normal memory accesses originating
from a processor with its PL being "1". The aim is to prevent a race condition from developing in the
dependency matrix when the DRSM module finishes its permanent checkpoint after a processor has finished
its checkpoint.

6. Just before the root processor of the checkpoint tree begins the establishment of the tentative checkpoint,
that processor sets a 2-bit checkpoint-state buffer (CSB) in the PSB of the local memory module to indicate
that the establishment of the tentative checkpoint is active. The state of the CSB can be one of
{CHECKPOINT_IS_NOT_ACTIVE, TENTATIVE_CHECKPOINT_IS_ACTIVE,
PERMANENT_CHECKPOINT_IS_ACTIVE}. In figure 6, processor "P[1]" sets the CSB to
"TENTATIVE_CHECKPOINT_IS_ACTIVE". The DSMM uses this state information to determine what
to do in the event that a fault occurs during the establishment of a checkpoint.

12
3. Dependent Processors and Dependent DRSM Modules

The acknowledgments that are propagated from the leaves of the checkpoint tree
up to the root in figure 6 lists the dependent processors. Each processor in
the tree determines processors that are checkpoint dependent upon itself,
packages this information along with all dependent-processor information from
the child processors, passes this package of information in an acknowledgment
to the parent processor. In the end, the root processor is aware of all
dependent processors in the entire tree.

The tree also propagates information about dependent DRSM modules to the root
processors. A DRSM module is a dependent DRSM module if any of the following
conditions is true.

When the DRSM module replies (with information about the dependent processors)
to the querying processor, the DRSM module also tells it whether the module is
a dependent memory module. The querying processor propagates this information
about dependent DRSM modules back up to the root processor of the checkpoint
tree.

E. Establishing Permanent Checkpoints

1. General Overview

Figure 7 shows the new algorithm
for establishing a permanent
checkpoint for a 4-processor DSMM.
The general strategy is that the
root processor in the checkpoint
tree for the tentative checkpoint
guides the establishment of the
permanent checkpoint. The root
processor tells all dependent
processors and all dependent DRSM
modules to establish a permanent
checkpoint. Once they complete
their permanent checkpoints, they
send acknowledgments to the root
processor. It then completes its
own permanent checkpoint and sends
an acknowledgment to the arbiter

processor. It removes the root processor from the queue.

2. Details

As a specific illustration, we trace the flow in figure 7. "P[1]" is the root
processor of the checkpoint tree for the tentative checkpoint. From it,
"P[1]" knows that "P[0]", "P[1]", and "P[3] are dependent processors and that
"DRSM[0]", "DRSM[1]" , and "DRSM[3]" are dependent DRSM modules. In this

1. The DRSM module identifies at least one processor that is dependent on the querying processor during the
tentative-checkpoint phase.

2. The DRSM module identifies the querying processor as one that has written to the module since the last
checkpoint. The DRSM module can determine this condition by finding one pair of blocks (in the 2 banks
of memory) for which (1) the last writer is the querying processor and (2) the data in one block of the pair is
in state "W" (i. e. working data).

Figure 7. Flow of Permanent Checkpoint

13
particular example, "DRSM[2]" is not a dependent DRSM module. "P[1]" tells
all dependent processors and DRSM modules to establish a permanent checkpoint.
Each of "DRSM[0]", "DRSM[1]", and "DRSM[3]" performs the following. The DRSM
module resets (to zero) all columns and all rows (in the dependency matrix)
containing any processor with its PL being "1". Next, the DRSM module
identifies all pairs of blocks (in the 2 banks of memory) for which their
states are "[TC, PC]" or "[PC, TC]". The DRSM module transitions their states
to "[PC, I]" or "[I, PC]", respectively. Finally, the DRSM module sends an
acknowledgment to the root processor.

After receiving the request to establish a permanent checkpoint, each of
"P[0]", "P[1]", and "P[3]" sends an acknowledgment back to the root processor
and resumes normal processing. After "P[1]" receives acknowledgments from all
dependent processors and memories, "P[1]" itself sends an acknowledgment to
the arbiter processor "P[0]" and resumes normal processing. "P[0]" then
grants the request from the next processor wishing to establish a checkpoint.

We should note the following additional details. "P[1]" sets the CSB to
"PERMANENT_CHECKPOINT_IS_ACTIVE" just before "P[1]" begins the phase for the
establishment of the permanent checkpoint. The dependent DRSM modules clear
all the PLs to "0" during phase 2. After the establishment of the permanent
checkpoint is complete, "P[1]" sets the CSB to "CHECKPOINT_IS_NOT_ACTIVE".
Also, each processor tells its local memory module to designate the tentative
checkpoint of the processor state in the PSB as a permanent checkpoint. The
processor does not wait for an acknowledgment from the local memory module
before sending an acknowledgment to "P[1]" since the network is reliable by
virtual of our assuming 2 independent paths between any two nodes.

F. Additional Features

1. Artificially Dependent Processors

If the establishment of a checkpoint is in progress, the arbiter queues
requests from processors that request permission to establish a checkpoint.
After the arbiter receives an acknowledgment that the establishment of the
current checkpoint is complete, the arbiter grants the next processor (waiting
in the checkpoint-request queue) permission to establish a checkpoint. There
can be many processors waiting in the queue.

If more than 1 processor waits in the queue, the arbiter grants permission to
the processor at the front of the queue but tells that processor, say "P[1]",
to artificially treat all the other processors (in the queue) as being
dependent on it. After "P[1]" finishes querying the DRSM modules to find the
genuinely dependent processors, "P[1]" adds the artificially dependent
processors to this group of genuinely dependent processors. Then, "P[1]"
requests that all of them establish tentative checkpoints.

In this way, any processor that submits a request to establish a checkpoint to
the arbiter processor needs to wait at most approximately the period for
establishing one checkpoint. That one checkpoint is the one that is currently
being established when the request arrives at the arbiter.

2. Arbiter

The algorithm for the DRSM uses an arbiter, which is "P[0]" in our example.
Although it appears to be a potential bottleneck in the DSMM, the arbiter
actually poses no particular problem. The maximum number of requests (for the

14
establishment of checkpoints) that can queue at the arbiter is "(number of
processors in the DSMM) - 1". After the current establishment of a checkpoint
completes, the arbiter tells the processor, say "P[2]", of the first request
in the queue to begin the establishment of a checkpoint. If there are other
requests in the queue, the arbiter tells "P[2]" to include their corresponding
processors as artificially dependent processors. In other words, after the
current establishment of a checkpoint completes, all processors with requests
waiting in the queue participate in the next establishment of a checkpoint,
clearing the entire queue. The maximum delay between (1) the arrival of a
request at the arbiter and (2) the participation (in the establishment of a
checkpoint) by the processor submitting the request is approximately the time
required for the current establishment of a checkpoint to complete.

G. Summary

The DRSM (and the RSM) basically records dependencies that arise among
processors as they access the same memory locations. Recording the
dependencies generally enables the DRSM to delay the establishment of
checkpoints until an arbitrarily chosen time. In our case, we use a timer to
announce when a processor should establish a checkpoint; the timer can set the
maximum temporal interval between checkpoints, effectively setting the maximum
time for roll-back recovery. Any interaction between an application process
and the environment of the DSMM poses a special problem and requires that the
processor of the application process must immediately establish a checkpoint.

VI. Distributed Recoverable Shared Memory for Communication Checkpoints
(DRSM-C)

Distributed recoverable shared memory for communication checkpoints is our
second algorithm for establishing checkpoints. It is a tightly synchronized
method (TSM). Wu presents one version of it [13]. The principal difference
between the TSM and the LSM is that the former forces the establishment of a
checkpoint for a processor if that processor become checkpoint dependent on
another processor.

In the version described by Wu, a processor "P[3]" must establish a checkpoint
if "P[1]" reads from data or writes to data that is cached in the dirty state
in "P[3]". In addition, "P[3]" must establish a checkpoint if it writes dirty
cache data back into main memory.

A. Hardware Overview

We apply the TSM to our base DSMM. Our system differs from that of Wu in 2
aspects. Wu uses a DSMM with both fault-tolerant caches and exactly 1 bank of
fault-tolerant memory. By contrast, our DSMM has caches that are not fault-
tolerant, but our system does have 2 banks of fault-tolerant memory.

The 2 banks enable us to eliminate 1 cause of establishing checkpoints.
Namely, a processor can write dirty cache data back into main memory without
requiring the establishment of a checkpoint. The DSMM must still establish a
checkpoint for a processor, say "P[3]", whenever the system transfers dirty
data written by "P[3]" to another processor, say "P[1]". This dirty data need
not reside in "P[3]" at the moment of the transfer but could reside solely in
main memory.

Figure 8 illustrates the distributed-recoverable-shared-memory-for-
communication-checkpoint (DRSM-C) module. The 3-bit state register (3BSR) and

15
the last-writer buffer for each block indicate, respectively, (1) whether data
in a block is dirty and (2) which processor must establish a checkpoint in the
event that the dirty data is transferred to another processor. The DRSM-C
module omits the dependency matrix. Any dependency that arises immediately
forces the establishment of a checkpoint; the newly established checkpoint
erases the dependency and hence obviates the need for a matrix to record the
dependency.

When an access arrives at a DRSM-C
module, it checks whether the matching
block of memory contains dirty data. If
the block contains dirty data, the DRSM-C
module sends a negative acknowledgment to
the memory-accessing processor and then
requests that the last-writer processor
(of the block with dirty data)
establishes a checkpoint. The 3-bit
register and the last-writer buffer
provide adequate information to determine
whether to negatively acknowledge a
memory access.

B. Conditions for Establishing
Checkpoints

Three events can trigger a processor to
establish a checkpoint.

C. Establishing Checkpoints

1. General Overview

Figure 9 illustrates the algorithm for establishing a checkpoint for a 4-
processor DSMM. The general strategy is that a processor wishing to establish
a checkpoint simply does the following. The processor writes its dirty cache
data back into memory and requests that each DRSM-C module establishes a
tentative checkpoint for the blocks containing data written by the processor.
Once all the modules acknowledge completion of the tentative checkpoint, the
processor requests that each module convert the tentative checkpoint into a
permanent checkpoint. Once the modules tell the processor that the
establishment of the permanent checkpoint is complete, the processor finishes
the establishment of the checkpoint and resumes normal processing.

Figure 8. DRSM-C

1. A timer expires. When the timer for a processor expires, it establishes a checkpoint. The timer ensures a
maximum bound on the time interval between checkpoints.

2. Communication occurs between a processor and the environment outside of the DSMM. When data leaves
or enters a DSMM, the processor handling the data must establish a checkpoint. Communication includes
interrupts.

3. Dirty data is transferred between processors. Since the TSM does not record dependencies among
processors and hence does not permit roll-back propagation, any dependency that arises (like that caused by
transferring dirty data between processors) forces the establishment of a checkpoint to erase the dependency.

16
2. Details

As a specific illustration, we trace the
flow in figure 9. "P[1]" begins the
establishment of the tentative checkpoint.
"P[1]" requests that each DRSM-C module
establishes a tentative checkpoint for each
pair of blocks (in both banks of memory)
that have been written by "P[1]". Once the
modules finish the tentative checkpoint,
they send acknowledgments to "P[1]". It
then begins the second phase, which is
establishing the permanent checkpoint.
"P[1]" then requests that each DRSM-C module
except "DRSM-C[2]" transitions each pair of
blocks in the tentative-checkpoint state
into the permanent-checkpoint state. In our
example, "DRSM-C[2]" does not contain any
blocks to which "P[1]" has written data
since its last checkpoint, so "DRSM-C[2]"
does not transition any pair of blocks into
the tentative-checkpoint state and hence
does not participate in the permanent-
checkpoint phase. After all 3 DRSM-C

modules complete the transition of blocks into the permanent-checkpoint state,
they send acknowledgments to "P[1]". It then resumes normal processing.

Figure 9 shows the general flow in establishing a tentative checkpoint but
omits 3 important details. They are the following.

Also, we should note the following. "P[1]" sets the CSB to
"PERMANENT_CHECKPOINT_IS_ACTIVE" just before "P[1]" begins the phase for the
establishment of the permanent checkpoint. After its establishment is
complete, "P[1]" sets the CSB to "CHECKPOINT_IS_NOT_ACTIVE". Also, each
processor tells its local memory module to designate the tentative checkpoint
of the processor state in the PSB as a permanent checkpoint.

D. Summary

Unlike the DRSM, the DRSM-C does not record dependencies that arise among
processors as they access the same memory locations. Hence, the DRSM-C
requires that a processor immediately establish a checkpoint if the processor

1. Before a processor requests all DRSM-C modules to transition blocks into the tentative-checkpoint state,
the processor (1) waits until all its pending cache operations are finished and (2) then writes all dirty
cache data back into memory. The processor waits for the DRSM-C modules to acknowledge that all the
write-backs are complete.

2. Each processor sends a copy of its state (i. e. data in the internal registers) to the PSB of the DRSM-C
module that is local to the processor.

3. Just before the processor begins the establishment of the tentative checkpoint, that processor sets a 2-bit
checkpoint-state buffer (CSB) in the PSB of the local memory module to indicate that the establishment
of the tentative checkpoint is active. The state of the buffer can be one of
{CHECKPOINT_IS_NOT_ACTIVE, TENTATIVE_CHECKPOINT_IS_ACTIVE,
PERMANENT_CHECKPOINT_IS_ACTIVE}. In figure 9, processor "P[1]" sets the CSB to
"TENTATIVE_CHECKPOINT_IS_ACTIVE". The DSMM uses this state information to determine
what to do in the event that a fault occurs during the establishment of a checkpoint.

Figure 9. Flow of Checkpoint

17
reads or writes a block (of memory) to which another processor has already
written data. In addition, to establish a maximum bound on the temporal
interval between the checkpoints for a processor, we use a timer to announce
when the processor must establish a checkpoint. Any interaction between an
application process and the environment of the DSMM also causes the
establishment of a checkpoint.

VII. Distributed Recoverable Shared Memory with a Hybrid Method (DRSM-H)

A. Hardware Overview

Figure 10 illustrates the arrangement
of the DRSM-H. In designing it, we
seek to maintain the good performance
of DRSM but to eliminate the cost of
the second bank of memory. Hence, the
DRSM-H omits the second bank of memory
and restricts the remaining bank of
memory to always hold the permanent
checkpoint. During the establishment
of a tentative checkpoint, each
processor involved in it writes the
dirty cache lines into a new buffer,
the tentative checkpoint buffer (TCB);
during the establishment of the
permanent checkpoint, each processor
involved in it writes the dirty cache
lines back into main memory. The TCB
ensures that the DRSM-H can recover
from a fault even if it occurs during
the establishment of the permanent
checkpoint.

Since the DRSM-H has only 1 bank of
memory for the permanent checkpoint,
whenever the 2nd-level cache must write
dirty data back into main memory due to

a conflict or capacity miss, the processor of that cache must establish a
permanent checkpoint. In order to keep dirty data "floating" among the caches
as long as possible before it is written back into main memory, we modify the
2nd-level cache to use 4 states: INVALID, SHARED, DIRTY_SHARED, and EXCLUSIVE.
Once a block enters the state of EXCLUSIVE, the block changes state among
DIRTY_SHARED and EXCLUSIVE.

Also, DRSM-H replaces the 3BSR
with a 2-bit state register
(2BSR). For each block, the
2BSR transitions among the
states indicated in figure 11.
When a 2nd-level cache issues an
EXCLUSIVE access to a block in
the state of "PC", the 2BSR
transitions from "PC" to "W".

Compared to the dependency
matrix in DRSM, the dependency
matrix in DRSM-H records the

Figure 10. DRSM-H

Figure 11. Transition of 2BSR

18
following more stringent conditions for dependency.

The read-after-write case now becomes a 2-way dependency. If the dependency
matrix recorded dependencies according to expression #1 mentioned earlier, the
following situation can arise. Processor "P1" writes data into memory block
"BA". Then "P2" reads the value of that block, which resides in state
DIRTY_SHARED, and "P1" subsequently evicts "BA" from the 2nd-level cache.
Next, "P1" establishes a checkpoint and must write the value in "BA" into main
memory. Unfortunately, "P1" cannot easily find "BA" since (1) it is no longer
in the cache of "P1" and (2) no checkpoint dependency (according to expression
#1) exists between "P1" and "P2". Hence, to solve this problem in a simple
way, we replace expression #1 with expression #3.

B. Conditions for Establishing Checkpoints

A processor in a DSMM with DRSM-H establishes a checkpoint when any of the
following 3 conditions arises.

C. Establishing Tentative Checkpoints

The procedure for establishing a tentative checkpoint is similar to that
illustrated in figure 6 for a 4-processor DSMM with DRSM. The principal
difference between the procedure for DRSM-H and that for DRSM is that the
processor in the DRSM-H does not write the dirty 2nd-level-cache lines back
into main memory. Rather, the processor writes the dirty lines into the TCB.
During the establishment of the permanent checkpoint, the processor writes the
dirty lines back into main memory.

D. Establishing Permanent Checkpoints

1. General Overview

Figure 12 shows the new algorithm for establishing a permanent checkpoint for
a 4-processor DSMM, following from the events in figure 6. The algorithm is
similar to that illustrated in figure 7 for DRSM. The principal difference is
that the dependent processors must first write their dirty 2nd-level-cache
lines back into main memory and complete the permanent checkpoints of the
processors before the dependent DRSM-H modules can complete their permanent
checkpoints. The root processor, "P[1]" writes its dirty 2nd-level-cache
lines back into main memory but does not complete the permanent checkpoint
until the DRSM-H modules complete their permanent checkpoints.

2. Details

 read after write of block
 P[i] <--> P[j] (expression #3)

 write after write of block
 P[i] <--> P[j] (expression #4)

1. A timer expires. The timer determines the maximum temporal interval between checkpoints.
2. The 2nd-level cache (1) evicts a cache line in state EXCLUSIVE without forwarding the line to another

cache or (2) evicts the last copy of a cache line in state DIRTY_SHARED. Both events require that a
DRSM-H module write the dirty line back into memory, which holds the permanent checkpoint.

3. Communication occurs between the processor and the environment outside of the DSMM.

19

As a specific illustration, we trace the flow in Figure 12. During phase 1,
"P[1]" determined that there are 3 dependent processors -- "P[0]", "P[2]", and
"P[3]" -- and 3 dependent memory modules -- "DRSM-H[0]", "DRSM-H[1]", and
"DRSM-H[3]". In this particular example, "DRSM[2]" is not a dependent DRSM-H
module. "P[1]" tells all dependent processors to establish a permanent
checkpoint.

After receiving the request to establish a permanent checkpoint, each of
"P[0]", "P[1]", and "P[3]" writes its dirty 2nd-level-cache lines back into
main memory. The processor waits until the write-back is complete, then sends
an acknowledgment back to the root processor, and resumes normal processing.
After "P[1]" receives acknowledgments from all dependent processors, "P[1]"
tells all dependent DRSM-H modules to establish a permanent checkpoint.

Each of "DRSM-H[0]", "DRSM-H[1]",
and "DRSM-H[3]" performs the
following. The DRSM-H module
resets (to zero) all columns and
all rows (in the dependency matrix)
containing any processor with its
PL being "1". Next, the DRSM-H
module identifies all blocks for
which their states are "[TC]". The
DRSM-H module transitions their
states to "[PC]". Finally, the
DRSM-H module sends an
acknowledgment to the root
processor.

After "P[1]" receives
acknowledgments from all and
memories, "P[1]" itself sends an
acknowledgment to the arbiter
processor "P[0]" and resumes normal
processing. "P[0]" then grants the
request from the next processor
wishing to establish a checkpoint.

Unlike the dependent memory modules
in DRSM, the ones in DRSM-H must
establish a permanent checkpoint
after the dependent processors
establish a permanent checkpoint.
The dependent processors must write

the dirty blocks in their caches back into main memory (which contains the
permanent checkpoint) during the establishment of the permanent checkpoint.
Only after this activity is complete can the dependent memory modules convert
their tentative checkpoint into a permanent one.

Concerning figure 12, we note the following additional details for DRSM-H. At
the start of phase 2, ÒP[1]Ó updates the checkpoint-state buffer (CSB) of the
PSB to ÒTENTATIVE_CHECKPOINT_IS_ACTIVEÓ. During phase 2, the dependent
processors write all the dirty blocks in their 2nd-level caches back into main
memory. A safe copy of these blocks exists in the TCB, so if a fault occurs
during the write-back, the DSMM can still recover from the fault. Further,
each dependent processor directs the PSB to invalidate its old permanent

Figure 12. Flow of Permanent Checkpoint

20
checkpoint and to designate the processor state saved in the tentative-
checkpoint area as the new permanent checkpoint. Each dependent memory module
clears, in the dependency matrix, all rows and columns containing any
processor with its PL being "1" and then resets all the PLs to "0". At the
end of phase 2, "P[1]" directs the PSB to invalidate its old permanent
checkpoint and to designate the processor state saved in the tentative-
checkpoint area as the new permanent checkpoint, and "P[1]" then updates the
CSB of the PSB to ÒCHECKPOINT_IS_NOT_ACTIVEÓ, indicating that phase 2 (and the
entire checkpoint) is complete.

E. Summary

DRSM-H is similar to DRSM but omits 1 of the 2 banks of memory. The remaining
bank of memory always holds the permanent checkpoint. So, we must expand the
number of triggers causing the establishment of a checkpoint to include the
event where a dirty 2nd-level-cache line is written back into main memory. In
order to maximally delay when a dirty line is written back into memory, we try
to keep the dirty line "floating" among the caches as long as possible;
towards that aim, we increase the number of cache-line states to include the
state of DIRTY_SHARED.

A processor in the DSMM with DRSM-H writes a dirty 2nd-level-cache line back
into memory only during the estabishment of the permanent checkpoint. In
order to ensure that the system can recover from a fault that occurs during
this write-back, the processor first writes all dirty cache lines into the TCB
during the establishment of the tentative checkpoint. If a fault occurs
during the actual write-back into main memory, the DSMM can complete the
write-back by retrieving the dirty lines from the TCB.

VIII. Distributed Recoverable Shared Memory with Logs (DRSM-L)

Several USM-type algorithms for establishing checkpoints in loosely-coupled
DSMMs (where software maintains the coherence of memory accesses) exist
[7][10]. These algorithms are all implemented in software. DRSM-L represents
the first attempt at constructing a hardware-based USM-type algorithm that
establishes checkpoints for tightly-coupled DSMMs.

A. Hardware Overview

Figure 13 illustrates the arrangement of the DRSM-L. It extends each line in
the 2nd-level cache to include a counter, a write-after-total-log flag
(WATLF), and a status-of-eviction flag (SEF). The counter counts the number
of accesses that hit in a 1st-level cache line. If a local access hits in the
1st-level cache, it simultaneously (1) returns the data in the matching line
to the processor and (2) forwards a hit notice to the 2nd-level cache so that
it can increment the counter. The 2nd-level cache also contains a queue to
hold incoming accesses from remote caches when the local cache is stalled
during the logging of 2nd-level-cache lines into the local memory module.

The DRSM-L module contains a line buffer and a counter buffer, of which both
function as logs. The 2nd-level cache fills the line buffer with cache lines
and fills the counter buffer with cache counters. The cache also copies the
extended tags into the buffers; an extended tag is a normal cache tag appended
with the index of the cache line. Also, each entry in the counter buffer
contains a status-of-eviction flag (SEF); the DRSM-L sets it to "1" if the
counter comes from a cache line that the cache will evict. Each of the line
buffer and the counter buffer has its own index register that points to the

21
next free entry in the buffer. After the local processor establishes a
checkpoint, the processor resets both index registers to "0", effectively
clearing both buffers. Also, the memory module contains both a processor
state buffer (PSB) and a tentative checkpoint buffer (TCB).

The 2nd-level cache maintains 2
index registers that are mirror
images of the index registers in the
DRSM-L module. Before the cache
copies a line or a counter (or group
of counters) into the line buffer or
counter buffer, respectively, the
cache checks its appropriate on-
board index register. If the copy
will cause an overflow in either the
line buffer or the counter buffer,
the cache will initiate the
establishment of a checkpoint on the
processor in order to reset all the
index registers to "0". If the copy
will not cause an overflow, then the
cache copies a line or a counter (or
group of counters) into the line
buffer or counter buffer,
respectively, and the cache
increments its appropriate on-board
index register.

B. Conditions for Establishing
Checkpoints

A processor in a DSMM with DRSM-L
establishes a checkpoint when any of
the following 4 conditions arises.

C. Establishing Logs

1. Motivation

DRSM-L enables each processor to establish a checkpoint without regard to any
other processor. The DRSM-L algorithm achieves this flexibility by recording,
in a log, the value of each new memory block arriving in the 2nd-level cache.
If a transient fault on a processor occurs, the recovery algorithm (1) resets
it, (2) resumes its execution from the processor state saved in the last
checkpoint, and then (3) uses the stored values in the log to satisfy 2nd-
level-cache misses during the recovery. After the processor consumes all the
values in the log, the processor has returned to the state just prior to the
occurrence of the fault, and the recovery is finished. The net effect is that
the value in any dirty cache line sent to a remote cache is never lost. The
log contains the values of the cache lines that the recovering local processor

1. A timer expires. The timer determines the maximum temporal interval between checkpoints.
2. The line buffer overflows.
3. The counter buffer overflows.
4. Communication occurs between the processor and the environment outside of the DSMM.

Figure 13. DRSM-L

22
needs to re-compute (and reproduce) exactly all the old values that it wrote
into its dirty cache lines. Hence, dependencies among processors never arise,
and each of them can establish a checkpoint without regard to any other
processor.

2. Detailed Discussion

Each DRSM-L module contains 2 logs: line buffer and the counter buffer.
Whenever an incoming cache line arrives at the DRSM-L module, it concurrently
(1) writes the extended tag (2nd-level-cache tag plus index) and data for that
line into the line buffer and increments the index to point at the next free
entry and (2) forwards the line to the 2nd-level cache. Since these 2
activities occur concurrently, the delay for the second activity hides the
delay for the first activity. The module logs only incoming cache lines that
satisfy data misses and ignores lines that satisfy instruction misses. When
the local processor accesses a line in the 1st-level cache, it simultaneously
(1) sends the data in the line to the processor and (2) forwards a hit notice
to the 2nd-level cache to increment its counter. Again, the delay for the
first activity hides the delay for the second activity. If the hit notice is
for a write, then the cache sets the WATLF in addition to incrementing the
counter. If the counter overflows, the cache copies both the extended tag (of
the cache line) and its counter into the counter buffer and sets the SEF in
the memory module to "0". The counter is 32-bits wide.

Eventually, an access from a remote cache via a directory controller arrives
at the local 2nd-level cache and hits in a valid cache line, or the local 2nd-
level cache evicts a cache line due to a conflict (or capacity) miss. Three
possibilities arise in our simulated DSMM from the perspective of the local
2nd-level cache.

In case #1, the cache copies the extended tag and the counter of the cache
line into the counter buffer and sets the SEF in the memory module to "1"
since the line will be evicted. In case #2, if the WATLF of the cache line is
"0", then the cache does no logging. In case #3, if the WATLF of the cache
line is "0", then the cache performs the same operations that it performs in
case #1. The directory controller at the request of the local cache can
perform the copy into the counter buffer in parallel with either (1)
acknowledging the remote invalidation request (in case #1) or (2) sending the
dirty data to the remote cache (in case #3). In other words, the delay for
the normal activities to maintain cache coherence masks the delay for copying
the counter into the counter buffer.

In case #2 and #3, if the WATLF flag of the matching cache line is "1", then
the cache does the following. The cache copies the extended tags and the
counters of all the cache lines with non-zero counters into the counter
buffer. Of course, the DRSM-L sets the SEF in the memory module to "1" only
for the counter of the cache line that will be evicted. Since the logging of
counters for case #2 and #3 is a total logging of all non-zero counters, the
cache resets all the WATLFs to "0".

The aim of this elaborate scheme to log counters into the counter buffer is to
effectively record when a line is evicted from the local cache. During

1. event = eviction (due to conflict miss or remote invalidation) and cache-line state = SHARED
2. event = flush (due to remote read) and cache-line state = EXCLUSIVE
3. event = eviction (due to conflict miss or remote invalidation) and cache-line state = EXCLUSIVE

23
recovery, the DRSM-L loads the counter and SEF in the 2nd-level cache with the
value of the counter and SEF logged in the counter buffer. When a processor
hits in the 1st-level cache, it forwards a hit notice to the 2nd-level cache;
it then decrements the counter of the matching cache line. Once the counter
reaches zero, if the SEF is set to "1", then the DRSM-L (1) knows that an
eviction occurred during normal execution (prior to recovery), (2) invalidates
the cache line, and (3) re-loads it with the next line and next counter and
SEF from the line buffer and counter buffer, respectively. If the SEF is "0",
then the DRSM-L knows that an invalidation did not occur and simply re-loads
the counter and SEF of the cache line with the next matching entry (according
to the extended tag) from the counter buffer.

To reduce the number of counters that are copied into the counter buffer, we
introduced the WATLF. The WATLF enables the cache to avoid stalling the
processor to write all the non-zero counters into the counter buffer. If the
WATLF is "0", then the counters needed to reproduce the dirty data to be
delivered to a remote cache or to be written back into memory (in case #2 and
#3) have already been saved in the counter buffer. So, the DRSM-L saves the
counter of only the evicted cache line into the counter buffer and, for case
#3, sets the SEF. On the other hand, if the WATLF is "1", then the necessary
counters have not yet been saved into the counter buffer, so the DRSM-L must
write all nonzero counters into the counter buffer.

D. Establishing Checkpoints

If a processor, say "P[1]", wishes to establish a checkpoint, "P[1]" first
updates the checkpoint-state-buffer (CSB) of the PSB to
ÒTENTATIVE_CHECKPOINT_IS_ACTIVEÓ, indicating that ÒP[1]Ó is in phase 1, the
tentative checkpoint. Then, "P[1]" waits until all its pending memory
accesses are complete (or negatively acknowledged). Next, "P[1]" writes all
its dirty blocks in the 2nd-level cache into the TCB. "P[1]" downloads its
internal registers (i. e. the processor state) into the tentative-checkpoint
area (not shown in figure 13) of the PSB (while preserving the previous
permanent checkpoint). At the end of phase 1, "P[1]" updates the CSB of the
PSB to ÒPERMANENT_CHECKPOINT_IS_ACTIVEÓ, indicating that ÒP[1]Ó is now in
phase 2, the permanent checkpoint.

"P[1]" writes all the dirty blocks in the 2nd-level cache back into main
memory, which always holds the permanent checkpoint. "P[1]" resets all the
index registers in both the local memory module and the 2nd-level cache.
"P[1]" resets all the WATLFs to "0". "P[1]" then tells the PSB to invalidate
the old permanent checkpoint in the PSB and to designate the processor state
saved in the tentative-checkpoint area as the new permanent checkpoint.
Finally, "P[1]" updates the CSB of the PSB to ÒCHECKPOINT_IS_NOT_ACTIVEÓ,
indicating that phase 2 (and the entire checkpoint) is finished.

E. Optimal Size of Line Buffer and Counter Buffer

For a given amount of silicon area from which we can build the line buffer and
counter buffer, we show that the optimal size of each is one where the ratio
of the number of entries in the counter buffer to the number of entries in the
line buffer equals the ratio of the rate at which the counter buffer fills to
the rate at which the line buffer fills. Suppose that we have the following
parameters.

24

Then, ignoring other triggers for checkpoints, we have the following
equations.

 A(E[CB]) + A(E[LB]) = AA (equation #1)
 CR = max (CBR / E[CB], LBR / E[LB]) (equation #2)

The optimum size of each of the counter buffer and the line buffer arises when
the "CR", rate of establishing checkpoints, is minimum. Suppose that we
select "E[CB]" and "E[LB]" to be "E0[CB]" and "E0[LB]", respectively, where

 CR = max (CBR / E0[CB], LBR / E0[LB]) (equation #3)
 = CBR / E0[CB] = LBR / E0[LB]. (equation #4)

Now, we consider what happens when we increase "E[CB]" or decrease it.
Suppose that we increase it to some value "E2[CB]" such that "E2[CB]" is
greater than "E0[CB]". By equation #1, "E[CL]" must decrease to some value,
say "E2[LB]. Then, we have that

 CR = max (CBR / E2[CB], LBR / E2[LB]) (equation #5)
 = LBR / E2[LB]. (equation #6)

Suppose that we decrease "E[CB]" to some value "E1[CB]" such that "E1[CB]" is
less than "E0[CB]". By equation #1, "E[CL]" must increase to some value, say
"E1[LB]. Then, we have that

 CR = max (CBR / E1[CB], LBR / E1[LB]) (equation #7)
 = CBR / E1[CB]. (equation #8)

Comparing equation #4, equation #6, and equation #8, we see that "CR" is
smallest when "E[CB]" equals "E0[CB]". Hence, the optimum ratio of "E[CB]" to
"E[CL]" is one where

 E[CB] / E[LB] = CBR / LBR. (equation #9)

F. Summary

DRSM-L differs fundamentally from the DRSM, DRSM-C, and DRSM-H in that a
processor can establish a checkpoint independently of all other processors. A
processor in the DSMM with DRSM-L has this flexibility since the processor
ensures that dirty data sent to other processors is never lost even if the
sending processor rolls back to the previous checkpoint. Specifically, each
processor logs each incoming cache line into the line buffer of the local
DRSM-L module and logs the number of accesses (that the processor makes) to
this cache line into the counter buffer of the DRSM-L module. If the
processor encounters a fault and rolls back to the last checkpoint, the

E[CB] = number of entries in the counter buffer
E[LB] = number of entries in the line buffer
 A(E) = amount of silicon area consumed by transistors to implement "E" entries
 AA = fixed amount of allocated silicon area in which to implement the counter buffer and the line buffer
 CBR = rate at which counter buffer fills in terms of the number of entries per unit time
 LBR = rate at which line buffer fills in terms of the number of entries per unit time
 CR = rate of establishing checkpoints

25
processor uses the cache data and access history recorded in the line buffer
and the counter buffer to satisfy all cache accesses during the recovery
period. Once the counter buffer is exhausted, the recovery is complete, and
the processor resumes normal execution. In this way, the processor re-
calculates exactly the original values of the dirty data that the processor
sent to other processors prior to encountering the fault. We note that DRSM-L
also enables a processor to roll back to the last checkpoint independently of
all other processors.

IX. Recovery

Fault-tolerance schemes generally involve 2 phases: (1) establishing periodic
checkpoints or logging data prior to the occurrence of any fault and (2)
rolling the system back to the last checkpoint and recovering the state of the
system prior to the fault. Although the focus of our work is the
establishment of checkpoints, we comment briefly on the issue of rolling back
from a fault for each of our 4 hardware-based algorithms.

A. DRSM-C

We consider the following simple scheme for rolling back from a fault
experienced by a processor. We arrange for a special recovery logic circuit
(RLC) on the memory module to periodically send "Are you alive?" messages to
the local processor. If it does not respond within a specified timeout
period, RLC assumes that the processor experienced a fault. If the fault is
permanent, RLC replaces the failed processor with the spare processor. Then,
RLC resets the processor, say "P3", and directs it to begin the recovery
activity. "P3" negatively acknowledges all cache-coherence messages from the
directory controllers until recovery is complete. "P3" invalidates all
entries in its cache and tells all the directory controllers to update their
directories to indicate that "P3" no longer has any cache lines. "P3" checks
its PSB. If "P3" failed during the establishment of a permanent checkpoint,
then "P3" completes the permanent checkpoint, telling the memory modules to
transition the 3BSRs from states "[W, PC]", "[PC, W]", "[TC, PC]", and "[PC,
TC]" to "[I, PC]", "[PC, I]", "[PC, I]", and "[I, PC]", respectively, for all
blocks where "P3" is the active writer; "P3" tells the PSB to designate the
processor state saved in the tentative-checkpoint area as the permanent
checkpoint. Otherwise, if "P3" failed during the establishment of a tentative
checkpoint, then "P3" discards the tentative checkpoint, telling the memory
modules to transition the 3BSRs from states "[W, PC]", "[PC, W]", "[TC, PC]",
and "[PC, TC]" to "[I, PC]", "[PC, I]", "[I, PC]", and "[PC, I]",
respectively, for all blocks where "P3" is the active writer; "P3" tells the
PSB to invalidate the processor state saved in the tentative-checkpoint area.
"P3" then loads the processor state stored in the permanent-checkpoint area of
the PSB and resumes execution.

B. DRSM

The recovery procedure for DRSM is similar to that for DRSM-C. The principal
difference is that "P3" must query the dependency matrix of each DRSM module
in order to determine all other processors that must also roll back to the
last permanent checkpoint. Reversing the arrows in expression #1, #2, #3, and
#4 yields the recovery dependencies. "P3" spawns a recovery tree that is
similar to the checkpoint tree (i. e. processor tree) generated during the
establishment of a tentative checkpoint.

26
DRSM has a scenario that does not arise for DRSM-C. "P3" can be establishing
a checkpoint with several other dependent processors when "P3" encounters a
fault. If "P3" fails during the establishment of the permanent checkpoint,
"P3" completes the permanent checkpoint along with the other dependent
processors. "P3" can immediately resume normal execution. If "P3" fails
during the establishment of the tentative checkpoint, "P3" along with all the
other processors in the checkpoint tree must discard this tentative checkpoint
and roll back to their previous permanent checkpoints. The roll-back of each
processor generates its own recovery tree of processors; all the recovery
trees can be combined into 1 huge recovery tree where all participating
processors can recover concurrently.

C. DRSM-H

The recovery procedure for DRSM-H is similar to that for DRSM. The principal
differences are the following. If "P3" failed during the establishment of a
permanent checkpoint, then "P3" must read the associated TCB and write all
dirty blocks back into main memory. Then, "P3" must tell all memory modules
to transition each 2BSR to state "PC". On the other hand, if "P3" failed
during the establishment of the tentative checkpoint, then "P3" only tells all
memory modules to transition each 2BSR to state "PC".

D. DRSM-L

The recovery procedure for DRSM-L differs fundamentally from the others.
Suppose that the processor experiencing the fault is, again, "P3". If "P3"
failed during the establishment of the permanent checkpoint, according to the
PSB, then "P3" must read the associated TCB and write all dirty blocks into
main memory. "P3" then completes the establishment of the permanent
checkpoint that was in progress when the fault occurred. Then, "P3" queries
all the memory modules to find messages which were sent to "P3" just prior to
the fault; "P3" negatively acknowledges them. "P3" then resumes normal
processing.

If "P3" did not fail during the establishment of the permanent checkpoint,
then "P3" must perform the following procedure. "P3" queries all the memory
modules to find messages which were sent to "P3" just prior to the fault; "P3"
negatively acknowledges them. Then, "P3" reads the entire line buffer and the
entire counter buffer and groups the entries according to the cache index of
the extended tag so that the entries can be easily fetched on a miss in the
2nd-level cache. "P3" saves these sorted entries in a separate memory area
reserved for the VMM; for the purpose of this discussion, we assume that they
reside in the sorted line buffer (SLB) and the sorted counter buffer (SCB).
Then, "P3" invalidates its caches and loads the processor state saved in the
permanent- checkpoint area of the PSB. "P3" resumes execution in recovery
mode. In this mode, if a miss occurs in the 2nd-level cache, a trap occurs to
the VMM. It finds the next matching line (of data) and counter from the SLB
and SCB and places the line and counter into the cache. The VMM also sets the
SEF in the cache to the value stored in the SEF of the SCB. Each subsequent
hit in the 1st-level cache causes the corresponding counter in the 2nd-level
cache to be decremented. Once a hit causes the counter to underflow, then a
trap occurs to the VMM. It checks the SEF of the cache line. If the SEF is
"0", then the VMM retrieves the next matching counter from the SCB to insert
into the cache line. If the SEF is "1" (indicating that the cache line in
normal processing was evicted from the cache), then the VMM retrieves both the
next matching line from the SLB and the next matching counter. Eventually,
the VMM will attempt to retrieve a counter from an empty SCB. When that event

27
happens, the "P3" will be in the state just prior to the occurrence of the
fault, and recovery is complete. The VMM then places "P3" in the normal mode
of execution where the counter increments on each hit. During the recovery
mode, "P3" negatively acknowledges all messages from the rest of the DSMM.
We note that DRSM-L has the extremely desirable property of no roll-back
propagation. If a processor experiences a fault, the processor (or the spare
processor) must roll back to the last checkpoint to resume execution. This
roll-back does not require that other processors also roll back to their last
checkpoints.

X. Implementation of Checkpoint Algorithms in ABSS

A. Communication between the DSMM and its Environment

We do not simulate interaction between the DSMM and its environment. Such
communication forces the establishment of a checkpoint for any processor
involved in the communication. The steps involved in establishing this
checkpoint are virtually identical to the steps involved in establishing the
checkpoint for the other triggers. So, understanding the impact of
checkpoints initiated by the reduced set of triggers allows us to understand
the impact of checkpoints initiated by all the triggers.

B. Simulation of the 3-bit State Register (3BSR)

Faithfully simulating the 3-bit state register (3BSR) associated with each
pair of blocks in memory requires that ABSS perform 2 separate scans of all
blocks of memory. One scan occurs during the establishment of the tentative
checkpoint; ABSS must transition the state from "[W, PC]" or "[PC, W]" to
"[TC, PC]" or "[PC, TC]", respectively. The second scan occurs during the
establishment of the permanent checkpoint; ABSS must transition the state from
"[TC, PC]" or "[PC, TC]" to "[PC, I]" or "[I, PC]", respectively.
Implementing such a scan in software can significantly reduce the speed of the
simulation by several orders of magnitude. Hence, we choose to not implement
the scan itself. Rather, we emulate the effect (of the 3BSR) that is seen by
the rest of the DSMM. To accomplish our goal, we use the checkpoint counters
from the original RSM algorithm. The correspondence between the states of the
3BSR and the states derived from the combination of the global checkpoint
counter (GCC), the local checkpoint counter (LCC), and the processor lock (PL)
is the following.

The correspondence between the transitions of the states of the 3BSR and the
transitions of the combination of the GCC, the LCC, and the PL are the
following.

1. [I, PC] <==> (LCC[last_writer] != GCC[last_writer])
2. [PC, I] <==> (LCC[last_writer] != GCC[last_writer])
3. [W, PC] <==> (LCC[last_writer] == GCC[last_writer]) && (PL[last_writer] == 0)
4. [PC, W] <==> (LCC[last_writer] == GCC[last_writer]) && (PL[last_writer] == 0)
5. [TC, PC] <==> (LCC[last_writer] == GCC[last_writer]) && (PL[last_writer] != 0)
6. [PC, TC] <==> (LCC[last_writer] == GCC[last_writer]) && (PL[last_writer] != 0)

28

The DRSM (or DRSM-C) can execute a copy-on-write in parallel with satisfying a
write access; hence, the DRSM can hide the time used by the copy-on-write.
During a write access to a block in state "[PC, I]", the DRSM must read data
from the left block (in state "PC) and return the data to the processor
submitting the access. When the DRSM returns the data to the processor, the
DRSM can simultaneously send a copy into the right block (in state "I"),
transitioning its state to "W". The DRSM effectively uses the time for
answering the write access to hide the time used by the copy-on-write. Hence,
we do not explicitly modify ABSS to simulate the behavior of copy-on-write or
even to simulate the existence of 2 banks of memory.

Therefore, we can collapse the 6 valid states and 6 valid state-transitions of
the 3BSR into 3 valid states and 3 valid state-transitions. There is a one-
to-one correspondence between these 3 valid states and the 3 valid states
derived from the combination of the GCC, the LCC, and the PL for each last
writer. There may be more than 3 states of the combination, but only 3 states
are valid.

Based on the 3 valid states derived from this combination, we modify ABSS so
that the DRSM (or DRSM-C) performs the same activities that it would perform
for the corresponding 3 valid states of the 3BSR. From the point of view of
the rest of the DSMM, a DRSM (or DRSM-C) using checkpoint counters and a lock
array functions identically to a DRSM using the 3BSR.

C. Simulation of the 2-bit State Register (2BSR)

By similar reasoning, we can use the GCC, the LCC, and the PL to simulate the
2-bit state register (2BSR) of the DRSM-H. The correspondence between the
states of the 2BSR and the states derived from the combination of the GCC, the
LCC, and the PL is the following.

The correspondence between the transitions of the states of the 2BSR and the
transitions of the combination of the GCC, the LCC, and the PL are the
following.

XI. Results

1. [I, PC] --> [W, PC] <==> LCC[last_writer] <-- GCC[last_writer]
2. [PC, I] --> [PC, W] <==> LCC[last_writer] <-- GCC[last_writer]
3. [W, PC] --> [TC, PC] <==> (PL[last_writer] <-- 1) && (LCC[last_writer] == GCC[last_writer]))
4. [PC, W] --> [PC, TC] <==> (PL[last_writer] <-- 1) && (LCC[last_writer] == GCC[last_writer]))
5. [TC, PC] --> [PC, I] <==> GCC[last_writer] <-- 1 + GCC[last_writer]
6. [PC, TC] --> [I, PC] <==> GCC[last_writer] <-- 1 + GCC[last_writer]

1. [PC] <==> (LCC[last_writer] != GCC[last_writer])
2. [W] <==> (LCC[last_writer] == GCC[last_writer]) && (PL[last_writer] == 0)
3. [TC] <==> (LCC[last_writer] == GCC[last_writer]) && (PL[last_writer] != 0)

1. [PC] --> [W] <==> LCC[last_writer] <-- GCC[last_writer]
2. [W] --> [TC] <==> (PL[last_writer] <-- 1) && (LCC[last_writer] == GCC[last_writer]))
3. [TC] --> [PC] <==> GCC[last_writer] <-- 1 + GCC[last_writer]

29
A. Parameters and Benchmarks

We implemented each of DRSM-C, DRSM, DRSM-H, and DRSM-L in our simulated DSMM.
We set the timer (that alerts a processor to establish a checkpoint) to expire
after 20 million cycles (according to the processor clock) since the
establishment of the last checkpoint. Twenty million cycles is 0.1 second.
We set the line buffer in the DRSM-L to 4096 entries and the counter buffer to
16384 entries; the ratio of the number of entries in the counter buffer to the
number of entries in the line buffer is 4.

We run 6 benchmarks -- cholesky, FFT, LU, ocean, radix, and water Ñ from the
SPLASH2 suite [12]. Cholesky factors a sparse matrix. FFT performs a fast
Fourier transform. LU factors a dense matrix. Ocean simulates eddy and
boundary currents in oceans. Radix performs a radix sort. Finally, water
evaluates the forces and potentials as they change over time among water
molecules.

These benchmarks represent a wide variety of memory-access patterns but do
virtually no communication with the environment of the DSMM. So, establishing
a checkpoint that is triggered by communication between a processor and the
environment outside of the DSMM does not arise in our simulations. We note
that regardless of the event (e. g. expiration of a timer, overflow of the
line buffer, etc.) triggering the establishment of a checkpoint, the procedure
for establishing a checkpoint remains the same. Hence, we can still ascertain
the performance of our hardware-based algorithms even if checkpoint
establishment is triggered by a smaller set of events.

B. Checkpoints and Logs

Table 1 below shows the number of checkpoints established per processor for
each of DRSM-C, DRSM, DRSM-H, and DRSM-L. DRSM has the fewest number of
checkpoints because this DRSM has only 1 trigger (i. e. expiration of a timer)
for establishing a checkpoint. DRSM-C suffers the most number of checkpoints
since a processor must establish a checkpoint whenever a dirty block written
by that processor is accessed by another processor; the frequency of this sort
of communication is rather high in, for example, "radix". DRSM-H has more
checkpoints than DRSM because a group of dependent processors among which a
dirty cache line is "floating" must establish a checkpoint when the last copy
of that dirty cache line is evicted from the group. DRSM-L has almost as few
checkpoints as DRSM has because both the line buffer and the counter buffer
are large enough to reduce the occurrence of overflows to a small number. A
processor must establish a checkpoint when either of these buffers overflows.

 DRSM-C DRSM DRSM-H DRSM-L

 cholesky 718.8 11.0 54.4 12.6

 FFT 16.4 2.0 6.0 2.1

 LU 141.0 9.4 11.2 8.9

 ocean 2612.2 24.0 73.0 42.9

 radix 390.1 1.0 16.0 4.1

 water 195.5 8.0 8.0 7.6

Table 1. Checkpoints per Processor

30

Table 2 below shows several statistics. Each number without parentheses is
the total number of dirty cache lines that are written back per processor into
main memory for all the checkpoints that occurred during the run of the
benchmark. For DRSM-C, DRSM, and DRSM-H, each number within parentheses
indicates the total number of dirty memory blocks (where a memory block is
identical in size to a 2nd-level-cache line) that are saved in the permanent
checkpoint. For DRSM-C and DRSM, the number within parentheses must be larger
than the number without parentheses. Dirty data that will be saved in the
permanent checkpoint need not necessarily all reside in the caches. Some of
that dirty data could be sitting in 1 of the 2 banks of memory. For DRSM-H,
the number within parentheses is generally smaller than the number without
parentheses. This behavior is due to the fact that we increased the number of
states for a cache line to include DIRTY_SHARED. When a processor establishes
a checkpoint, the processor will write all dirty cache lines, lines with a
state of either DIRTY_SHARED or EXCLUSIVE, back into main memory. There can
be multiple copies of the same line in a state of DIRTY_SHARED. Since there
is no convenient way in which to synchronize the caches to write only 1 copy
of a DIRTY_SHARED line back into memory, the DSMM writes all of the copies
back into memory, resulting in some unnecessary write-backs.

Finally, for DRSM-L, 2 numbers reside within parentheses. The number before
the semicolon is the number of cache lines logged per processor into the line
buffer. The number after the semicolon is the number of cache counters logged
per processor into the counter buffer. Since the ratio of the number of cache
counters to the number of cache lines ranges from approximately 2.5 to
approximately 5.0 across most of the benchmarks, the relative sizes of our
counter buffer and our line buffer is close to optimal as the ratio of their
entries is 4.

C. General Performance across the Benchmarks

To study the performance of our 6 benchmarks, we analyze the number of cycles
consumed by 5 major components (of execution): non-idle time of the processor,
the instruction stall, the lock stall, the data stall, and the barrier stall.

 DRSM-C DRSM DRSM-H DRSM-L

 cholesky 58201.5 22731.1 46831.0 24738.2
 (58210.5) (27633.5) (42821.1) (35622.4; 120469.5)

 LU 27198.6 9807.0 15208.6 9991.4
 (27202.1) (11482.8) (12007.2) (11007.9; 34064.8)

 FFT 8496.5 2193.2 11094.8 2262.2
 (8496.5) (2318.1) (8466.4) (8774.9; 20562.6)

 ocean 275522.6 98751.4 143959.5 128062.5
 (275533.2) (115946.6) (139939.8) (124021.1; 513912.6)

 radix 57779.0 1034.5 14874.0 4954.5
 (57779.0) (1035.9) (14327.8) (8326.1; 64198.2)

 water 5326.8 1463.4 4233.0 1442.6
 (5326.8) (2019.1) (2025.4) (4776.0; 23232.6)

Table 2. Checkpoint Data and Logging Data per Processor (refer to text)

31

Figure 14. Cycles of Execution for the Benchmarks

32

The data stall includes the amount of time used for both upgrades and genuine
misses. In our measurements, we obtain data for each of the 8 processors and
present the average of the data for all processors except processor #0.
Initialization effects skew the data for processor #0, so we exclude it.

Figure 14 summaries the performance of the base DSMM, DSMM with DRSM-C, DSMM
with DRSM, DSMM with DRSM-H, and DSMM with DRSM-L for each of the benchmarks.
We see 2 clear trends. Across the benchmarks, DRSM generally has the best
performance among the hardware-based algorithms, and DRSM-C generally has the
worst performance. Each processor in a DSMM with DRSM establishes a
checkpoint under only 1 condition: expiration of the timer. A processor in
the other DSMMs establishes a checkpoint under more conditions. In
particular, a processor in a DSMM with DRSM-C establishes a checkpoint under
the worst condition: dirty data written by that processor is accessed by
another processor. In applications like radix with much dirty sharing, DRSM-C
has an extremely negative impact on performance.

The notable exception is FFT running on a DSMM with DRSM-C. FFT, like radix,
has much dirty sharing but performs well on DRSM-C. The execution of FFT
consists of a repeated sequence of barrier, computation, barrier, and
communication. During communication, each processor reads dirty data from all
other processors into its own section of memory. In the base DSMM, this read
of dirty data causes a delay in the form of 1 message (from the directory
controller) to the processor owning the dirty data and 1 acknowledgment
message from that same processor, replying with the dirty data. In the DSMM
with DRSM-C, the inter-processor communication at each barrier causes all the
processors to establish a checkpoint, flushing all dirty data in the caches
back into main memory. By the time that the execution of the FFT reaches the
communication phase (in the repeated sequence), each processor reads only data
that is already clean in other processors, all dirty data already having been
flushed at the previous checkpoint. Hence, the DSMM with DRSM-C avoids the
cost of the acknowledgment message that the base DSMM suffers for the dirty
read. (We discuss this phenomenon in detail in a subsequent section.) The
elimination of this cost offsets the increase in execution time caused by the
interference of checkpoint establishment on the execution of the FFT. An
example of interference is flushing dirty local data (i. e. data which is not
shared among processors) in the cache back into main memory. The net effect
is that the FFT running on DRSM-C performs as well as the FFT running on the
base system.

The performance decline for DRSM-H is due to 4 reasons. First, the dependency
matrix records a doubly linked dependency for the read-after-write case
(expression #3), so a processor is more likely to establish a checkpoint.
Second, establishing a checkpoint can be triggered by an additional event: the
last copy of a dirty cache line is evicted from the cache. Third, when a
checkpoint is established, multiple processors may write multiple copies of
the same dirty cache line back into memory. Fourth, after cold-cache misses
are satisfied, some read misses incur the additional cost of finding a
DIRTY_SHARED copy in a remote cache since DRSM-H tries to avoid write-backs
into memory in order to minimize the number of checkpoints. The last reason
is likely the principal cause of the performance decline as the number of
checkpoints established for DRSM-H is not significantly larger than the number
of checkpoints established for DRSM.

The performance decline for DRSM-L is due to 1 major and 1 minor reason. The
minor reason is that the line buffer or the counter buffer occasionally

33
overflows. When either of them overflow, the processor must establish a
checkpoint in order to empty the buffers. In the simulated system, the
buffers are sufficiently large that overflows occur only occasionally. The
major reason that DRSM-L performs worse than DRSM is that whenever a local
processor sends a copy of a dirty cache line with WATLF being "1" to a remote
processor (or evicts a dirty cache line with WATLF being Ò1Ó), the local
processor must first perform the costly operation of copying all the nonzero
counters into the counter buffer. The delay for this copy is seen by both the
local processor and the remote processor. Worse, if other cache accesses (e.
g. invalidations) from remote processors arrive during this copying of
counters into the counter buffer, those cache accesses must wait in the queue
until the copying is finished. The local processor also incurs additional
delay if the processor evicts a dirty cache line with its WATLF being Ò1Ó on a
conflict miss.

Finally, the base DSMM, DSMM with DRSM-C, DSMM with DRSM, DSMM with DRSM-H,
and DSMM with DRSM-L all perform almost equally well in running water. There
are 2 reasons for this behavior. Water has little communication among the
processors (helping DRSM-C and DRSM-L), and the working set of data fits
within the 2nd-level cache (helping DRSM-H).

D. Performance of a Specific Benchmark

We now focus on behavior that is peculiar to each benchmark.

1. Fast Fourier Transform (FFT)

Compared to the base DSMM, the system with DRSM performs well because it
minimally perturbs the normal operation of the DSMM. Interference occurs only
during the periodic establishment of checkpoints, determined solely by the
expiration of a timer. DRSM-H performs noticeably worse probably because a
substantial number of reads misses occur on memory blocks that are held in a
cache state of DIRTY_SHARED. If a block is DIRTY_SHARED, the directory
controller must retrieve a copy of the block from a processor holding a copy
of it. Retrieving a copy from a processor requires more time than merely
retrieving a copy from the local memory. (The number of additional
checkpoints caused by evicting the last copy of a dirty block ÒfloatingÓ among
a group of caches is not large enough to account for the decreased performance
of DRSM-H.)

The surprising result is the performance of the DSMM with DRSM-C. Compared to
the result for the base DSMM, the data stall decreases significantly, and the
barrier stall increases by almost the amount of the decrease. FFT running on
the DSMM with DRSM-C runs almost as fast as the FFT running on the base DSMM.

We find the explanation for these results in how the algorithm for FFT works
[11]. It mainly runs in a repeated sequence of barrier, computation, barrier,
and communication. Figure 15 presents a simplified view of the sequence.
Processor "P1" reads data from region "RA", performs computation on the data,
and writes the results back into "RA". After barrier "B2", processor "P1"
reads data from other regions into which other processors have written the
results of computation. "P1" writes this data into region "RB". Meanwhile,
those other processors read all the data from "RA". After barrier "B3", "P1"
performs computation (similar to that after "B1") on the data in "RB". This
latter computation does not appear explicitly in figure 15. After yet another
barrier (not shown in the figure), "P1" reads data from other memory regions
updated by other processors and writes that data into region "RA". The cycle

34
repeats several times. The transpose in the FFT algorithm corresponds to the
blocked reading phases like that between "B2" and "B3"; the blocked reading
phases is the principal communication in the sequence of barrier, computation,
barrier, and communication.

The cost of the communication in figure 15
actually decreases if the DSMM uses DRSM-C.
Figure 16 illustrates the messages that arise
for both the base DSMM and the DSMM with DRSM-C
in the context of the communication in figure
15. In the base DSMM, each read by "P2" to a
dirty block generates a read request "Q1" to
memory "M3". "M3" forwards the request via "Q2"
to the cache of "P1". "P1" replies with "Q3".
"M3" updates its copy of the dirty block,
changes its state in the memory directory to
"shared" (basically, the clean state), and
fowards the data via "Q4" to "P2".

In the DSMM with DRSM-C, the interaction at the
barrier (e. g. "B2" in figure 15) just prior to
the communication causes "P1" to establish a
checkpoint that transitions all blocks in "RA"
into the permanent checkpoint state. The
checkpoint causes all dirty blocks to be copied
back into memory. The diagram in the bottom
half of figure 16 uses the dashed line of "Q3"
to represent this copying back of dirty data.
All subsequent reads by "P2" to region "RA" (in
figure 15) finds only clean blocks, and "M3" can

respond to these subsequent reads. These reads cause only "Q1" and "Q4" to be
generated, indicated by figure 16. Adding in the cost of "Q3", we find that
DRSM-C actually reduces the cost of the communication by the amount
represented by the omitted "Q2".

Hence, we see the significant
reduction in data stall for DRSM-C
in figure 14. A significant portion
of the communication indicated in
figure 15 incurs the cost of only
"Q1" and "Q4". The cost of "Q3"
contributes to a significant
increase in the barrier stall.
Eliminating the cost of "Q2" offsets
the increase in data stall due to
interference in the operation of the
cache (since its blocks are cleaned
at each checkpoint) and in other
stalls due to establishing the
checkpoint itself.

2. Radix

Compared to the base DSMM, the
system with DRSM again performs
well. DRSM-H performs noticeably
worse probably because many read

Figure 16. Messages for Communication

Figure 15.

35
misses occur on memory blocks that are in a cache state of DIRTY_SHARED.
Also, DRSM-L performs noticeably worse than DRSM as radix has 1 of the 2
highest rates of filling the counter buffer and line buffer. We obtain the
fill-rate by dividing the number of entries written into the counter buffer by
the duration of benchmark. High fill-rates cause interference with the normal
operation of the DSMM.

On the other hand, the DSMM with DRSM-C performs much worse than the other 2
systems. This poor performance is due to the nature of the algorithm for
radix. Each processor runs in an iterative loop. During each iteration, each
processor updates all entries in the 3 arrays accessed by all other
processors. Barriers force this update to occur at approximately the same
time for all processors. Different processors may update different entries
that actually exist in the same cache line, resulting in false sharing, and
dirty cache lines bounce back and forth among processors. Performing these
writes to already dirty cache lines causes almost all the processors to
establish checkpoints simultaneously and frequently (during the update of the
arrays). When almost all processors establish concurrent checkpoints, they
can interfere with each other by overloading the memory modules and increase
the amount of time required to establish the checkpoints. The net effect is
to considerably increase the duration of the data stall.

3. LU

Compared to the base DSMM, DSMM with DRSM, DSMM with DRSM-H, and DSMM with
DRSM-L perform approximately equally well. The DSMM with DRSM-C performs
somewhat worse than the other systems.

We look more closely at the results for DRSM-C. In each iteration of the
major loop of execution, the bulk of the communication among processors occurs
after the perimeter blocks are updated with the already updated diagonal block
[11]. This communication consists of only each processor reading the value of
the pertinent updated perimeter blocks; each processor uses them to compute
the new values of its allotted group of interior blocks. The computation of
the interior blocks comprises the bulk of the execution in LU. Two barriers
bracket the start and the end of this computation. The interaction at the
barrier signaling the start of this computation causes all processors that
wrote into the perimeter blocks to establish checkpoints and hence to convert
all dirty data in the perimeter blocks to clean data that is part of the
permanent checkpoint. Subsequent reads to the perimeter blocks by the
processors computing values for the interior blocks do not cause additional
checkpoints to be established. Hence, we have an effect that is similar to
that depicted in figure 16. A processor computing the new values for the
interior blocks reads the value of the pertinent perimeter blocks and finds
that they are already in the "clean" state, avoiding the cost of message "Q2".
Unfortunately, the savings represented by "Q2" is offset by the cache
interference that establishing checkpoints causes. A processor that updates
the perimeter blocks also updates some interior blocks. The caches of each
processor are large enough to retain the interior blocks between iterations.
In the base DSMM without checkpoints, each processor finds the interior blocks
to already be dirty in its own cache when that processor attempts to update
the interior blocks. In the DSMM with DRSM-C, each processor that updated a
perimeter block finds the interior blocks to be clean in its own cache when
that processor attempts to update the interior blocks. Hence, that processor
must incur the heavy cost of sending an upgrade request (MEMSYS_UPGRADE) to
the memory directory to update the state of the blocks to be dirty. Thus, the
DSMM with DRSM-C performs worse than the other DSMM systems.

36

4. Cholesky

Cholesky uses a sub-matrix algorithm to factor a sparse matrix and is similar
to LU in structure and partitioning. The principal difference is that the
algorithm is not globally synchronized between steps. When a processor
finishes processing a block, the processor sends a notification to all other
processors (in the row or column of the block) which need to read this block.
Each processor spins on a lock-protected task queue and waits for blocks that
the processor needs.

We observe the following about figure 14. All the systems exhibit almost no
barrier stall as cholesky has no global synchronization between steps. In
addition, DRSM and DRSM-L perform equally well. DRSM-H performs noticeably
worse probably because many read misses occur on memory blocks that are in a
cache state of DIRTY_SHARED. DRSM-C has the worst performance. The spinning
at the task queue causes processors to establish a large number of checkpoints
due to communication between pairs of processors.

5. Ocean

Ocean is an algorithm that simulates that movement of water in the ocean. The
algorithm partitions the ocean into a grid of squares and assigns each square
to a processor. It performs computation on its own square. The communication
between processors occurs mainly at the boundaries of the squares.

Compared to the base DSMM, the DSMM with DRSM performs well. DRSM-H performs
noticeably worse probably because many read misses occur on memory blocks that
are in a cache state of DIRTY_SHARED. Also, DRSM-L performs noticeably worse
than DRSM as ocean has 1 of the 2 highest rates of filling the counter buffer
and line buffer. High fill-rates cause interference with the normal operation
of the DSMM. DRSM-C performs worst; several barriers that enforce
synchronization between horizontal phases of each time step cause many
checkpoints to be established [8].

6. Water

Water is an algorithm that evaluates the forces and potentials among a system
of water molecules over a period of time [8]. The molecules exist in a
cubical space. The algorithm partitions it into a number of cubes and assigns
each cube to a processor. Each processor performs computations on only its
own cube and reads the values of molecules that exist within a cutoff radius
inside neighboring cubes. Significant communication occurs when a molecule
moves from one cube into another cube.

The performance of all 5 DSMMs is equally good. DRSM-H performs as well as
DRSM. Since the cache-miss rate is extremely low [12], dirty blocks in DRSM-H
are unlikely to be evicted back into main memory, so DRSM and DRSM-H have the
same rate of establishing checkpoints. DRSM-L performs as well as DRSM.
Since the amount of communication between processors is extremely low [12] and
since the eviction rate is extremely low (which is implied by the low cache-
miss rate), the rate at which the line buffer and cache buffer fills is low.
In fact, water has the lowest such rate, thus minimizing the impact of logging
data on the normal operation of the DSMM.

DRSM-C performs well because the amount of communication between processors is
extremely low, so instruction-execution time (i. e. "non-idle time of CPU" in

37
figure 14) dominates the total execution time of the application. Eliminating
the instruction-execution time, we see that DRSM-C negatively impacts the
remaining execution time to the same degree that DRSM-C negatively impacts the
remaining execution time in, for example, LU. The dominance of the
instruction-execution time in water masks the inherently poor performance of
DRSM-C.

XII. Conclusion

Based on the results, we discover that DRSM has the best performance but has 2
principal negative features. DRSM is expensive in terms of requiring 2 banks
of fault-tolerant memory and has complex features: arbiter, artificially
dependent processors, dependency matrix, 3BSR, etc. DRSM-L has the second
best overall performance and is relatively cheap, requiring only 1 bank of
fault-tolerant memory. Further, the algorithm that DRSM-L uses to establish a
checkpoint and to log data (in the line buffer and the counter buffer) is less
complicated than the algorithm used by DRSM. DRSM-L also has the ideal
recovery property: if a processor rolls back to the last checkpoint due to a
fault, other processors need not roll back to their last checkpoints. The
principal negative feature of the DRSM-L is that a recovery can be somewhat
slow particularly if the line buffer and the counter buffer are large (hence
requiring much time for the VMM to sort their entries). We note that in
general faults should occur infrequently in well-built (i. e. reliable)
systems, so slow recovery after a rare occurrence of a fault should not pose a
problem. We rule out DRSM-C as a viable means of establishing checkpoints as
DRSM-C can perform poorly, depending on the application. DRSM-H is probably a
poorer method of establishing checkpoints than DRSM-L. Although DRSM-H
performs only slightly worse than DRSM-L, DRSM-H uses a very complicated
algorithm to establish checkpoints. In addition to the complexity of DRSM,
DRSM-H must deal with a TCB, an additional cache-line state, etc.

Therefore, with regards to cost and performance, we conclude that DRSM-L is
the best hardware-based algorithm for establishing checkpoints.

38

References

 1. R. E. Ahmed, R. C. Frazier, et. al., "Cache-Aided Rollback Error
Recovery (CARER) Algorithms for Shared-Memory Multiprocessor Systems",
"Proceedings of the 20th International Symposium on Fault-Tolerant
Computing Systems", pp. 82-88, 1990.

 2. M. Banatre, A. Gefflaut, et. al., "An Architecture for Tolerating
Processor Failures in Shared-Memory Multiprocessors", "IEEE Transactions
on Computers", vol. 45, no. 10, pp. 1101-1115, October 1996.

 3. E. Bugnion, S. Devine, et. al., "Disco: running commodity operating
systems on scalable multiprocessors", "ACM Transactions on Computer
Systems", vol. 15, no. 4, Pages 412-447, November 1997.

 4. S. Herrod, M. Rosenblum, et. al., "The SimOS Simulation Environment",
Stanford University, pp. 1-31, February 1997.

 5. D. B. Hunt and P. N. Marinos, "A General Purpose Cache-Aided Rollback
Error Recovery (CARER) Technique", "Proceedings of the 17th International
Symposium on Fault-Tolerant Computing Systems", pp. 170-175, 1987.

 6. G. Richard III and M. Singhal, "Using Logging and Asynchronous
Checkpointing to Implement Recoverable Distributed Shared Memory",
Proceedings of the 12th Symposium on Reliable Distributed Systems , pp.
58-67, October 1993.

 7. J. P. Singh, W. D. Weber, and A. Gupta, "SPLASH: Stanford Parallel
Applications for Shared-Memory", technical report: csl-tr-92-526,
Stanford University, pp. 1-42, June 1992.

 8. D. Sunada, D. Glasco, M. Flynn, "ABSS v2.0: a SPARC Simulator",
technical report: csl-tr-98-755, Stanford University, pp. 1-27, April
1998.

 9. D. Sunada, D. Glasco, M. Flynn, "Fault Tolerance: Methods Of Rollback
Recovery", technical report: csl-tr-97-718, Stanford University, pp. 1-
51, March 1997.

10. G. Suri, B. Janssens, et. al., "Reduced Overhead Logging for Rollback
Recovery in Distributed Shared Memory", Proceedings of the 25th
International Symposium on Fault-Tolerant Computing Systems , pp. 279-
288, 1995.

11. S. C. Woo, J. P. Singh, J. L. Hennessy, "The Performance Advantages
of Integrating Block Data Transfer in Cache-Coherent Multiprocessors",
Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS - VI),
pp. 219 - 229, October 1994.

12. S. C. Woo, M. Ohara, E. Torrie, J. Singh, A. Gupta, "The SPLASH-2
Programs: Characterization and Methodological Considerations",
Proceedings of the 22nd Annual International Symposium on Computer
Architecture , pp. 24 - 36, June 1995.

13. K. Wu, W. Fuchs, et. al., "Error Recovery in Shared Memory
Multiprocessors Using Private Caches", "IEEE Transactions on Parallel
and Distributed Systems", vol. 1, no. 2, pp. 231-240, April 1990.

