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Experience
with building
a commodity
Intel-based
ccNUMA
system

Commercial cache-coherent nonuniform
memory access (ccNUMA) systems often
require extensive investments in hardware
design and operating system support. A
different approach to building these systems is
to use Standard High Volume (SHV) hardware
and stock software components as building
blocks and assemble them with minimal
investments in hardware and software. This
design approach trades the performance
advantages of specialized hardware design
for simplicity and implementation speed, and
relies on application-level tuning for scalability
and performance. We present our experience
with this approach in this paper. We built a
16-way ccNUMA Intel system consisting of four
commodity four-processor Fujitsu® TeamserverTM

SMPs connected by a SynfinityTM cache-
coherent switch. The system features a total
of sixteen 350-MHz Intel® XeonTM processors
and 4 GB of physical memory, and runs the
standard commercial Microsoft Windows
NT® operating system. The system can be
partitioned statically or dynamically, and uses

an innovative, combined hardware/software
approach to support application-level
performance tuning. On the hardware side,
a programmable performance-monitor card
measures the frequency of remote-memory
accesses, which constitute the predominant
source of performance overhead. The monitor
does not cause any performance overhead and
can be deployed in production mode, providing
the possibility for dynamic performance tuning
if the application workload changes over
time. On the software side, the Resource Set
abstraction allows application-level threads
to improve performance and scalability by
specifying their execution and memory affinity
across the ccNUMA system. Results from a
performance-evaluation study confirm the
success of the combined hardware/software
approach for performance tuning in
computation-intensive workloads. The
results also show that the poor local-memory
bandwidth in commodity Intel-based systems,
rather than the latency of remote-memory
access, is often the main contributor to poor
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scalability and performance. The contributions
of this work can be summarized as follows:

● The Resource Set abstraction allows control over
resource allocation in a portable manner across
ccNUMA architectures; we describe how it was
implemented without modifying the operating system.

● An innovative hardware design for a programmable
performance-monitor card is designed specifically
for a ccNUMA environment and allows dynamic,
adaptive performance optimizations.

● A performance study shows that performance and
scalability are often limited by the local-memory
bandwidth rather than by the effects of remote-
memory access in an Intel-based architecture.

1. Introduction
There is an increasing need for powerful servers to meet
the processing demands of modern transaction-processing
systems and Internet data providers. Several technologies
are available to meet these demands, the most popular of
which are clusters and symmetric multiprocessor machines
(SMPs) [1]. Clusters are in widespread use because of
their cost, reliability, and scalability advantages, but they
also require substantial overhead in system management
and maintenance. In contrast, SMP systems offer better
performance, a simple programming model, and a single
system image, which simplifies system management and
maintenance. However, SMPs cannot scale beyond a
limited number of processors because of technology
limitations. Both cluster and SMP technologies are
now entrenched in the mainstream of computing, with
commercial pressures emphasizing commodity, off-the-
shelf processors and components. In particular, SMP
systems that use Intel** x86 processors and run Windows
NT** [2] are increasing in favor because of their low
cost, application software availability, and success in
the personal computer and workstation markets.

Cache-coherent nonuniform memory access (ccNUMA)
systems represent a third approach that overcomes the
scalability limits of SMP systems while still providing a
single-system image that simplifies management and
maintenance [3]. A typical design in such systems uses
several SMPs as computing nodes and connects them with
a cache-coherent switch that supports shared memory
across all processors. Special care is necessary to tune
the hardware system for optimal performance. Several
commercial systems use this technology [4 –9].

There are many advantages to ccNUMA systems,
including scalability, ease of management, and workload
consolidation leading to reduced maintenance costs.
Such systems also offer the option of partitioning the
machine for failure containment, workload isolation, and
management. However, ccNUMA systems pose several

performance challenges because of their nonuniform
memory access times. Internode memory accesses occur
when a processor on one computing node requests a cache
line that resides on a different node. Such memory
transactions span two memory buses and a switch, in
contrast to the case of an SMP, in which all accesses
occur over a single shared bus, taking the same time to
complete. Cache hierarchies can reduce the impact on
performance by keeping the data close to the processors
that use them. Commercial ccNUMA systems typically
deploy a “remote” cache in each computing node,
containing the recent references made by the processors
in one node to memory banks in other nodes.

Caching techniques can reduce the performance impact
on ccNUMA systems only up to a point. There are
situations in which an application may be simultaneously
writing to two independent regions within a cache line.
Such false sharing within a cache line causes the coherence
mechanism to move the line back and forth between
different computing nodes. Additionally, some workloads
can exhaust the capacity of the caches and the directory
tables that manage coherence. Solving these performance
problems is not trivial, and requires substantial investment
in hardware and operating system tuning. This paper
describes our experience with an alternative approach
that simplifies the design and improves implementation
turnaround time. It uses commodity hardware and
software components as building blocks with minimal
additional investments in hardware and software. To
mitigate the performance problems, our approach relies
on application-level tuning. This paper describes the
design and evaluation of a system built using this
approach.

We used a cache-coherent interconnect to connect four
four-processor SMP nodes [9]. Each node contains four
350-MHz Intel** Xeon** processors and 1 GB of main
memory. The resulting system is a 16-way machine
that supports shared memory across all processors and
aggregates the memories of all nodes into a single system
image of 4 GB. Our design builds on top of the individual
node design, which includes an additional “processor slot”
in the memory bus for hosting a mesh coherence unit
(MCU). The MCU module supports memory coherence
across a switch.

The node design thus allows extension and scalability,
but without any system-level tuning. In particular, it is
not possible to add a remote cache or extend the cache
hierarchy beyond what is available at the processor level.
Also, some arcane instructions that access data across
cache lines are not supported. We relied on tuning the
application software to overcome these problems. Toward
this goal, we have implemented a programmable
performance-monitor card to assist programmers in
understanding application behavior in the ccNUMA
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platform. The monitor1 tracks only remote accesses to
application-specified regions of main memory. This allows
the programmer to detect access patterns that cause
performance problems. It does not impose any overhead
in performance, and is different from traditional analysis
tools based on tracing. While the monitor allows
sophisticated dynamic performance adaptation, we
have not exploited that feature in the work discussed
in this paper.

We ported three operating systems to the prototype:
Microsoft** Windows NT 4.0, SCO** (Santa Cruz
Operation, Inc.) Unixware** 7.0, and Linux. We focus
in this paper on the Windows port. This work was
challenging because we had to work around the scalability
limitations of Windows NT without having access to
its source code. We used the device-driver model for
kernel extensions that NT supports, and added several
abstractions at the application level to overcome the
performance limits of the system. We also extended the
Basic Input–Output System (BIOS) and the NT Hardware
Abstraction Layer (HAL) to present the operating system
with a single system image. These extensions do not
require any modifications to the NT source code, and
allow Windows NT to treat the system as a single 16-way
SMP.

The second major component of our enhancement is
an implementation of a Resource Set abstraction (RSet),
which allows application programs to control resource
allocation to improve performance. The current
implementation of RSets consists of a collection of
application program interfaces (APIs), dynamic link
libraries (DLLs), and a kernel-mode device driver that
allows applications to control where memory is allocated.

We used RSets to tune a suite of six parallel programs,
and studied the scalability of the applications under
different system configurations. Our results also suggest
that the poor local-memory bandwidth of the current
generation of Intel-based SMPs often has more of a
detrimental effect on performance than the latency of
accessing remote memory across the interconnect. This
result is somewhat surprising, since one would expect the
latency of the NUMA interconnect to be the major source
of overhead in a ccNUMA system.

The paper outline is as follows: Sections 2 through 4
describe the basic implementation effort, including
hardware, performance monitor, operating system support,
and the Resource Set abstraction. Section 5 describes
the support for partitioning, and Section 6 presents the
performance evaluation. The paper concludes with a
discussion of related work in Section 7 and concluding
remarks in Section 8.

2. Basic hardware overview

Basic hardware description
We used a Synfinity** interconnect switch [9] to connect
four Pentium** II-based, Fujitsu** Teamserver** SMP
nodes, resulting in a 16-way ccNUMA system. Each node
contains four 350-MHz Intel Xeon processors, each with
a 1MB L2 cache, 1 GB of RAM, a standard set of I/O
peripherals, and a mesh coherence unit (MCU). The
MCU provides coherent access to the memory and I/O
devices that exist on other nodes. We designed a hardware
card to attach the MCU to the Synfinity switch, which
connects the four nodes to form the 16-processor system.
We configured the switch to provide a bandwidth of 720 MB
per second per link per direction in the prototype. The
original Fujitsu configuration supports a two-node
ccNUMA system, wherein the MCUs of the two nodes
are directly connected to each other.

The MCU in each node snoops the node’s local memory
bus and uses a directory-based cache-coherence protocol
to extend memory coherence across nodes. The MCUs
exchange point-to-point messages over the switch to access
remote memory and to maintain cache coherence over the
entire system. The MCU defines a four-node memory map
that effectively partitions a standard 4GB physical address
space into four areas of 1 GB each, one for each of the
nodes in a four-node system. In addition to memory,
memory-mapped I/O and I/O port addresses are also
remapped to be accessible globally from any processor
in the system. Figure 1 shows a descriptive diagram of
the hardware architecture.

The Opium performance monitor card

Description
The Opium performance monitor card consists of field-
programmable gate arrays (FPGAs) and a 512K 3 36-bit
SRAM memory. Figure 2 shows a simplified block diagram

1 The card name is Opium, an acronym based on Olifant, the internal code name
for the project. It is unrelated to recreational drugs.

Figure 1

Hardware diagram for the ccNUMA system.
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of the performance card. The FPGAs contain the
necessary logic to capture information about the desired
memory transactions on the ccNUMA interconnect; this
information is then stored into the SRAM memory. The
card has two interfaces. The first monitors the packets
that go through the MCU by tapping into the ccNUMA
interconnect. The second conforms to the PCI standard
and plugs into the PCI bus of a host node. Packet
monitoring is nonintrusive and does not affect packet
timing; hence, the card monitors the remote-memory
accesses that occur among the system’s nodes without
affecting their performance. The card does not, however,
monitor the memory transactions on the local-memory
bus on the node where it resides. Incorporating local
accesses would have required a more powerful card with
substantially greater resources, and it was not clear during
the design whether adding this complexity would have
been useful in achieving our aim of reducing remote-
memory accesses.

The PCI interface serves several purposes, among which
the most important are mapping the Opium card memory
into the main memory of the host node and issuing
interrupts to a local host processor whenever the FPGA
logic detects the occurrence of a programmable set of
events. The card is also programmed through the PCI
interface to identify the memory-access transactions of
interest that should be monitored, whether inbound to
the SMP node, outbound, or both.

The FPGA on the card has 32 programmable filters that
allow it to monitor memory references made to specific
ranges of physical addresses. An application or the
operating system programs a filter by setting five registers
within the filter. The registers contain 1) the starting
address of the region to be monitored, 2) its size, 3) the

granularity of the measurement, 4) a bit mask of the
transaction types to be monitored, and 5) the starting
counter within the card memory. Each filter receives a
copy of each memory transaction that travels on the
ccNUMA interconnect. If a transaction has a type
and memory address that match the filter, the latter
increments a corresponding counter within the card
memory. The base counter for the region specified within
the filter and the measurement granularity determine the
counter to be incremented. Thus, the programmable
granularity within a filter allows the application to count
references to multiple page-size memory regions or
multiple cache-line-size memory regions. Each of the 512K
counters can be programmed to generate an interrupt
when a specific number of references occurs. The interrupt
is issued as a regular PCI interrupt and given to the host
processor. This feature allows the operating system or the
application to obtain dynamic feedback about the “hot
spots” within the monitored regions on the fly. (We do
not discuss this feature or its use further in this paper.)

In addition to the region filters, there are 16 secondary
counters, each of which contains a similar filter. These
counters are programmed such that they shadow a set of
the region counters, and are co-incremented whenever any
such counter is incremented because of a given memory
transaction. These counters reflect the cumulative counts
of accesses to an area of virtual memory that may be
allocated to scattered physical pages by the operating
system. Moreover, the secondary counters can be
programmed to count only a subset of the transaction
types that are monitored by the region counters. This way,
one can differentiate between read and write accesses to a
particular memory region by setting different secondary
counters to track each type of memory access.

Optimization methodology
A programmer can use the Opium board to isolate
performance problems caused by nonlocal memory
accesses and accordingly control the relative placement of
threads and heap memory. The software interface consists
of libraries that control access to the Opium card through
a regular device-driver interface. During initialization, an
application must make an initialization call to the library.
As the library allocates memory, it captures the virtual-to-
physical mappings (see Section 3) and writes a file that
associates application data with its associated physical
address (this is also saved in memory). Once the
application has completed its initialization, it makes
another library call to start the monitoring, specifying the
regions to be monitored and the granularity at which the
monitoring is to be done. When the application is ready to
stop monitoring, it makes a corresponding library call. The
result, along with the virtual-to-physical address mappings,
is then input to a postprocessing program whose output is

Figure 2

Block diagram of the Opium performance monitor board.
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a table listing each application data area with the number
of references from each node.

The ability to specify variable-sized ranges readily
suggests a measurement methodology based on successive
refinements. First, start with coarse-grained memory
regions such that the granularity of measurement in each
region is large, say at the page level. Then, concentrate
on the most frequently referenced pages by reducing the
number of regions to be monitored and the granularity of
the memory areas being monitored while collecting counts
on the various parts of the pages. If necessary, we can
continue this process down to individual cache lines. This
successive-refinement approach is meant for the common
situation in which access hot spots are not clearly defined,
making it difficult to determine where to initially focus the
performance optimization effort.

Analysis
Unlike many performance-optimization techniques that
are used to guide the design of the hardware and the
operating system, our focus is on optimizing application
software performance after the system is designed. Thus,
the performance-debugging methodology we advocate here
is different from traditional techniques based on tracing or
program annotations. A trace of an application’s memory
references can identify data-placement problems and
performance hot spots [10]. To generate a trace, the
application is run, and trace records are generated and
stored for each memory reference of interest. Tracing can
be done by hardware, e.g., using a logic analyzer, giving
rise to no performance perturbation [11]. Alternatively, it
can be done in software by instrumenting the application,
but the perturbation introduced by the tracing code must
be compensated for during postmortem analysis. Either
way, tracing memory references generates voluminous
quantities of data that are difficult to reduce and
complex to map back to changes in program behavior.
Furthermore, the management and engineering of
these traces are not trivial.

An alternative solution to tracing is to use program
annotation. This technique provides affinity in memory
access through a combination of compiler analysis and
operating system support for data placement. Often,
source-level annotations may also be added to provide
hints that aid the analysis. This technique tends to be
useful when the code is well understood or is amenable
to automatic analysis. However, in practice, application
complexity makes it difficult to add the appropriate
annotations, or makes compiler analysis intractable.

In contrast to tracing and annotation, our solution
stresses flexibility, which we achieve through the
programmable interface of the Opium monitor. The
application or operating system sets the granularity of
monitoring within each region, with the granularity

ranging from 2 MB to a 32-byte cache line. Each filter
has a range of counters on the card, such that there is a
counter for each monitoring unit within the region. The
output of the card is a list of the frequencies of remote-
memory references that occur during monitoring, so that
hot spots can be identified by high counts, while “local”
memory accesses or those that are fielded by the local
caches are identified by low counts.

To summarize, the novel aspects of our work which
distinguish it from previous research are the following:

● Flexibility in monitoring through a fully programmable
card that can be put under operating system or
application control. This contrasts with approaches in
which the monitoring granularity is fixed. Our approach
also lends itself to a systematic performance-tuning
process based on successive refinements.

● Ease of use by avoiding the complex engineering tasks
of collecting and maintaining traces, or annotating
programs. The histograms we provide can easily be
projected on a spreadsheet to reveal access patterns
and guide performance tuning.

● A nonintrusive technique, and one that can be applied
to production systems without affecting performance.

● Focus on ccNUMA systems and limiting monitoring to
remote-memory references. We believe that this choice
allows us to concentrate on the most pressing problem
in ccNUMA systems.

● Ability to generate performance-related interrupts to
enable future research in dynamic performance tuning
and adaptation.

These advantages come at some cost. The monitoring
system cannot capture temporal changes in the remote-
access references. Furthermore, since the card resides on
the interconnect side of the MCU, it cannot identify the
actual processor within a node that is responsible for an
access. Nevertheless, our experience has shown that these
problems do not prevent the successful application of the
approach. Section 6 contains a performance evaluation
using this approach.

3. Basic software support
The independent SMP nodes forming the ccNUMA system
were designed to function as independent nodes. Thus,
each node has its own independent boot program with
no preexisting coordination to bring up the system as one
unit instead of four independent ones. Additionally, none
of the operating systems available to us were designed for
this mode of operation, or for supporting ccNUMA. In
particular, the operating systems were not designed to
handle remote I/O devices, remote memory, or the special
mechanisms for sending processor interrupts across the
interconnect.
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We have ported three operating systems to our platform
with varying degrees of success. These are Microsoft
Windows NT, SCO Unixware, and the Linux operating
system from the open-source community. We describe
here how we handled the problems and our experience
in porting the various operating systems.

Extending BIOS, NT support, and Unixware
We enhanced the Basic Input–Output System (BIOS) and
the NT Hardware Abstraction Layer (HAL) supplied by
Fujitsu in order to enable Windows NT to run on the
16-processor system (the Fujitsu implementation could
support a maximum of two nodes). When powered on, the
system begins to boot as four separate SMP systems. After
the BIOS code on each node is executed, the system
executes our BIOS extension (eBIOS) before booting
the operating system. The eBIOS reconfigures the
four SMP nodes into one 16-way ccNUMA system.
Our modifications to the NT HAL support remote
interprocessor interrupts and provide access to remote I/O
devices and I/O ports by remapping them as necessary.
The combination of the HAL and eBIOS code presents
Windows NT with a machine that appears to be a
16-processor SMP with 4 GB of physical memory.

The eBIOS allows the system to be partitioned at
boot time into smaller NUMA systems. For example,
the eBIOS can partition the system into two two-node
systems, each with eight processors and 2 GB of physical
memory. Each partition runs a distinct copy of Windows
NT. Other configurations for partitioning the 16-way
system into separate systems are also possible. The eBIOS
can also “deactivate” processors in a node at boot time,
allowing us to create nodes with fewer processors for
configuration benchmarking purposes.

Porting Windows NT took one team member about two
months to complete without any serious problems. We
also ported Unixware with comparable effort. Both ports
were stable and enabled many benchmarking runs and
demonstrations. This is remarkable given the lack of
source code for Windows NT save for the HAL. For
Unixware, we had access to the source code, and the
modularity of the operating system and the strict layering
of software modules greatly simplified the port.

Porting Linux
Porting Linux to our ccNUMA system was attractive
because of its popularity, the free availability of the source
code, and the existence of a large base of users and
expertise. However, our experience in porting Linux was
not a positive one. It took three team members working
more than six months, and we admit that the resulting
port is not stable enough to run industry-standard
benchmarks. The problems lie in the poor modularity

of the operating system, its outdated technology, and the
development process of the open source community.

Linux remains a workstation operating system developed
and tested primarily on individual user workstations. By
virtue of the large number of CPUs, I/O devices, and large
amount of memory present in our system, our hardware
stressed many areas of the operating system that were not
usually tested. The initial porting efforts concentrated on
extending the basic symmetric multiprocessor (SMP)
capabilities and the large memory support of the Linux
kernel itself. At the time we started the Linux port, Linux
on the Intel x86 family supported only 1 GB of RAM.
Later, the Linux community removed this restriction and
added limited support for ccNUMA operation.

Our progress was slowed by having to keep up to date
and cope with the rapid evolution of the Linux kernel.
There were two kinds of changes which affected us
directly. The first consists of frequent and significant
changes introducing a major new functionality or
structural change. The second consists of changes which
are primarily cosmetic in nature but often are difficult
to deal with. For these reasons, we have focused our
benchmarking studies and performance evaluation on
the Windows NT platform.

4. The Resource Set abstraction and its
implementation
Operating systems on SMP architectures try (when other
constraints permit) to schedule threads on the same
processor on which they have previously executed.
Creating an affinity between a thread and its cache
footprint in this manner results in good cache-hit ratios. If
the performance of a ccNUMA system is to scale as more
nodes are added, the operating system must accommodate
the variability in memory access times across the system.
In particular, a thread’s memory allocation requests must
be satisfied such that the majority of its memory accesses
are served by the node on which it executes. Creating
affinity for memory allocations in this manner enables
applications to take full advantage of the system hardware
by reducing interconnect traffic. Indeed, an application
may suffer in performance if most of its accesses are
to memory residing on remote nodes.

NUMA-aware applications thus require information
about the underlying architecture in order to optimize
performance. Applications could, for instance, use this
information to colocate threads with the data structures
they most often use, thereby reducing the frequency of
costly remote-memory accesses. However, this requirement
poses two problems: how to represent the information
about the underlying architecture, and how to avoid
creating platform-specific dependencies in the software
that compromise application portability to other ccNUMA
systems, including future generations of the current
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platform. The Resource Set (RSet) abstraction solves
these two problems. In brief, it intuitively captures the
most common characteristics of ccNUMA machines and
presents the application programmer with a high-level,
portable abstraction. Applications written to this model
do not require low-level information about the underlying
architecture, and can easily be ported to other ccNUMA
platforms. To implement this model, the operating system
or application libraries must provide an efficient mapping
from the RSet model to the actual architecture.

Description
Intuitively, an RSet groups several resources in such a way
that a thread that is bound to a resource set consumes
resources exclusively from that set. For example, one can
specify an RSet containing the processors and physical
memory available to one node. A thread that is bound to
such an RSet will execute only on processors in that node,
and have its memory allocations backed only by physical
memory on that node.

RSets are flexible. They can combine resources in two
different nodes, include resources spanning different
nodes, contain a partial set of the resources on one node,
or any other combination that suits the needs of the
application. Furthermore, they can be manipulated using
union and intersection operations and can also form
hierarchies whereby one large RSet is made to contain
several smaller RSets. To simplify the interface, our
library provides a global RSet that contains all of the
resources in the system. Thus, an application can build
additional RSets by specifying subsets of the global
one. An implementation must provide the RSet
implementation with a mechanism to identify the
resources available in the system. For instance, such
support can be implemented in Windows NT 4.0 by
using an additional call in the HAL.

The RSet implementation provides fine-grained affinity
control. Functions in the API fall into the following
categories:

● Determining the system configuration.
● Creating and manipulating RSets.
● Allocating virtual memory that is backed by the physical

memory contained in an RSet.
● Binding processes and threads to the processors in an

RSet.

We have implemented the RSet abstraction using a
combination of dynamically linked libraries (DLLs),
backed by an NT kernel-mode device driver. Furthermore,
we also include a higher-level API which provides a
simplified interface to the RSet abstraction that is similar
to traditional thread packages. Thus, an application
programmer can use the RSet facility indirectly through

the familiar interface of a thread library, or can access it
directly to exercise greater control.

Implementation
We implemented support for RSets in Windows NT 4.0,
which already has processor-affinity support that allows an
application to bind threads to particular processors. The
RSet implementation uses this feature to provide control
over thread placement. Windows NT 4.0, however,
assumes that memory is equidistant from all processors
in a system, and therefore does not supply any primitives
to control memory placement. Adding such support
directly to the operating system requires source-code
access, so we resorted to using a device driver and DLLs
to provide control over memory affinity. The device driver
implements the mechanism to control the placement of
data in physical memory, while the DLL implements the
allocation policies and a high-level, machine-independent
abstraction to enhance application portability. This way,
the application can organize its data structures so that
they will be close to the threads that use them the most.

The device driver is supported by a modified HAL
which “hides” a portion of the physical memory on each
node from the operating system. The HAL modifies the
tables that the firmware constructs at boot time to
describe the available memory. The modified tables are
then passed to the Windows NT memory-management
initialization code. The device driver manages this
“hidden” memory as though it were a memory-mapped
device. More specifically, the device driver uses Windows
NT support routines that map physical memory into
ranges of virtual memory. Figure 3 is a diagram of the
implementation.

The DLL implements the RSet interface and
additionally exports an API for redirecting standard
memory-allocation calls such as malloc. Applications use
the DLL to issue normal memory-allocation requests,

Figure 3

Memory affinity support application uses DLL and device driver to
bypass operating system and controls memory allocation and placement.
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which in turn are redirected by the DLL into the device
driver interface. According to the policy specified by the
RSet, the DLL translates the request to the device driver,
which in turn carries out the request.

Thus, the application or middleware embedded in the
library itself can allocate memory from a specific node to
create affinity between threads and data structures. The
“hidden” memory is not subject to paging or movement,
since the Windows NT memory manager does not control
it. Once memory is allocated, the pages remain locked in
physical memory, and the virtual-to-physical translation
does not change. Additionally, the device driver ensures
that the virtual memory allocated during an application
request will be backed by physically contiguous memory.
As described in the next subsection, this feature reduces
the resources required on the performance monitor card.

Memory-allocation policies
We have implemented several memory-affinity policies
which, along with thread affinity, fix a particular relationship
between the processor doing the computation and
the memory being referenced. Several policies were
implemented for the purpose of experimentation. A
complete list of all implemented policies is not relevant
to this discussion, so we focus on the most important
ones. The first two policies enforce thread affinity, and
the remainder, memory affinity. An application specifies
one of each.

1. Fill: In this policy, as many threads are bound to a
node as there are processors before we continue to
the next node.

2. Round-robin: In this policy, threads are bound such
that the first thread is assigned to the first node, the
second thread to the second node, and so on in a
round-robin fashion.

3. Float: With Float memory allocation, there is no
enforced affinity. This allocation bypasses the driver-
based memory allocator and uses the standard Windows
NT memory-allocation primitives.

4. Local: With Local memory allocation, memory is
physically located on the node where the allocating
thread is running. This establishes an affinity between
the calling thread and the allocated memory.

5. Remote: With Remote memory allocation, memory
is allocated on some node other than the one where
the calling thread is active. This policy is useful in
performance debugging and experimentation.

6. Striped (with stride): With Striped memory
allocation, each successive page of memory (or a
specified number of pages—a “stride”) is allocated
from the node that is logically next in sequential order,
so that the first “stride” pages are from node 0, the
second “stride” from node 1, and so forth in a round-

robin fashion. Many programs have the property that
their threads use different sections of a common data
structure. Striped memory allocation is appropriate for
such structures, although to make the best use of them,
it may be necessary to pad or insert fill into the data
structures to ensure that the threads access disjoint
subsets of the pages occupied by the data structure.
Also, this policy could be used as a default when the
relationship between threads and memory cannot be
described.

5. Partitioning support
A principal advantage of a ccNUMA machine is that it
offers a single system image across a large number of
processors. It is often desirable, however, to partition
a large ccNUMA machine into smaller, isolated
configurations. Such partitioning is useful for isolating
workloads, containing faults, providing high availability,
and supporting different operating systems on the same
machine [12]. Partitioning thus adds a high degree of
flexibility. For example, a banking system may designate a
portion of the resources in a ccNUMA machine to serve
requests incoming via the Web, while the rest of the
machine runs the bank’s database. By strictly isolating
these two workloads, the configuration eliminates
interference in performance between the two applications,
and enables them to use two different operating systems
if required.

There are two types of partitioning. On one hand, static
partitioning draws the boundaries between partitions at
boot time. The boundaries can be changed only if the
machine is restarted. On the other hand, dynamic
partitioning can change the boundaries between partitions
while the machine is running. The second form is a more
powerful abstraction than the first, because it provides
greater flexibility without affecting the availability of the
machine. However, it requires nontrivial support.

Static partitioning
We introduced extensions to the BIOS to enable the user
to control how the machine is partitioned at boot time.
To simplify the implementation, the unit of partitioning
was chosen to be an SMP node. Thus, it is possible to
partition the machine into four independent four-way
SMPs, two eight-way ccNUMA systems, one SMP
and one twelve-way ccNUMA system, or one eight-way
ccNUMA and two independent four-way SMPs, in
addition of course to running the entire machine as
one 16-way ccNUMA system.

Each SMP starts independently and proceeds until it
finishes most BIOS start-up functions. At that point, the
BIOS stops and prompts the user to select a partitioning
scheme from the configurations described above. After the
selection, the various partitions proceed to boot their
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respective operating systems. It is important to note that
it is possible to reboot one partition or more without
affecting the others. Thus, this solution provides a
reasonable degree of isolation between partitions.

In retrospect, the advantage of this scheme was its
simplicity and practicality. On the other hand, it requires
each SMP node to have its own console, and thus negates
the “single-system image” advantage of the ccNUMA
system. One may argue, however, that a single-system
image is incompatible with the notion of running multiple
partitions.

Our experience in this regard revealed a serious
problem. Windows NT identifies file systems by drive
letters. This proved very cumbersome, because the drive
letters must be managed so that they appear identical over
all of the various configurations. For example, a disk on
SMP 2 may be drive “C” for the configuration that
contains only this SMP node as an independent
partition. This same disk will have a different letter in a
configuration where the entire system forms a 16-way
partition. Given that each SMP can belong to different
partitions under different configurations, some disks will
have to be accessible to applications under different drive
letters without careful management. Unfortunately,
Windows applications do not handle this situation very
well. Worse yet, Windows NT insists that there be a drive
“C” to store the operating system and boot information.
The situation is even more complicated if one attempts to
do software striping or exploit the logical volume features
of NT over disks that belong to multiple SMPs.

Our conclusion is that Windows NT is not the
appropriate platform for supporting partitioned ccNUMA
systems, because of its legacy requirement of using drive
letters to represent file systems, and its inability to mount
these file systems in a portable manner as in UNIX**. The
problem seems to be fundamental, and it suggests either
using UNIX variants when partitioning is required, or
expending considerable resources in managing the drives
in an NT system and limiting the possible configurations.

Dynamic partitioning
Dynamic partitioning is more attractive than static
partitioning, since the boundaries for the partitions can
be changed while the system is running without rebooting
any of the partitions. For example, consider the banking
example that we described before. The bank may wish
to devote a large portion of its resources to serving user
requests at times when demand is high, at the expense of
the resources devoted to running the database. At night,
it may be useful to move some of these resources back to
the database partition when user demand is low. Thus, the
additional resources can enable the database to provide
more resources for nightly system audits and backups. In
the morning, the resources can be shifted in the opposite

direction without shutting down either partition or
affecting the availability of the services.

We have selected Linux as the operating system to
support dynamic partitioning. This decision was motivated
by the availability of the operating system source code,
and our earlier experience with Windows NT. It was also
necessary to have access to the source code to enable the
partition boundaries to move at run time without shutting
down the affected operating systems. To simplify the
implementation, the partition boundaries are still along
the SMP node boundaries, as described in the preceding
subsection. Thus, one can move one SMP at a time
between configurations. Adding a node requires modifying
the cache-coherency control registers within the mesh
coherence unit (MCU) to include the added node in the
coherence domain of the receiving configuration. The next
step is to search the memory of the added node for the
configuration tables that identify its associated resources
(CPUs, memory, I/O buses). The kernel data structures of
the receiving configuration are then modified to reflect the
additional resources, while the CPUs in the added node
run through the boot phase, during which the local
timers of the added CPUs are synchronized with those
of the receiving nodes. The added CPUs then enter the
scheduling loop to begin executing application processes.

When a node is deconfigured, we first eliminate its
CPUs from the affinity masks of all existing processes and
force a reschedule. This step is necessary to prevent an
application process from being scheduled on a CPU that
will no longer be available to the system. The next step is
to disassociate the memory to be deconfigured from the
coherency domain of the existing configuration. Thus,
future accesses to the deconfigured memory will not
interfere with the existing configuration.

Some restrictions to the above scheme are necessary
because of the Linux operating system. Deconfiguring the
memory of a node requires that all usage of the memory
on that node be eliminated. Since the Linux operating
system requires zero-based addressing of the physical
memory, and it places many of its kernel’s data structures
in the low-address range, removing the “first” node is very
difficult. Removing a different node from the memory
point of view is accomplished by first ensuring that no
further memory is allocated from that node. Then all
process page tables are scanned to identify whether any
of the mapped pages fall into the memory range to be
deconfigured. If so, the relevant pages are unmapped, and
their contents are copied into pages that will continue to
belong with the existing partition. The newly allocated
pages are mapped to replace the deconfigured pages. If a
new page cannot be allocated at that point because of
memory pressure, the target page is paged out. Removing
memory would be substantially more difficult to accomplish
if it were to reside in the first node. Since such memory
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can be assigned anywhere in the kernel (e.g., device-driver
usage, internal data structures for process table), one would
need to track the usage of each page and require a callback
for the memory to be freed, which at this point is not
provided in Linux.

The overall dynamic resource-migration capabilities
of an operating system are an integral part of an overall
system, where a global resource manager (GRM) monitors
resource utilization and determines how resources should
be assigned to the various partitions (dependent on goals
set forth for the entire cluster) and when resources must
be migrated. Figure 4 shows this architecture.

6. Performance evaluation
Our performance evaluation consists of three parts. First,
we report the component costs of simple operations

using synthetic tests. The results of these tests provide a
foundation for understanding the results of more complex
applications. Second, we report on the performance of
several applications from the Splash-II benchmark [13], a
computationally intensive benchmark widely used to test
the scalability of shared-memory systems. We used the
Opium board to tune applications, resulting in generally
good scaling. Finally, we report on the performance of
Web-oriented benchmarks. This result shows that the poor
local-memory access performance of Intel-based SMPs
limits the performance of larger ccNUMA configurations.

Synthetic tests
The synthetic tests measure the ratios of local to remote
memory access latencies and bandwidth. We ported and
instrumented several benchmark programs from the
Hbench-OS and Lmbench suites [14, 15], using native
Win32 calls to replace C library routines on the paths
being measured. Additionally, we extended the
benchmarks by adding control for memory and thread
affinities and reporting on the performance of memory
accesses under different NUMA configurations.

Local vs. remote memory latency
We used three single-threaded C applications to measure
memory latency:

● BwMemCp uses the Win32 MemoryCopy¼ call to copy
one area of memory to another.

● BwMemRd reads and sums an area of memory.
● BwMemWr writes to an area of memory.

The programs were compiled with Microsoft Visual
Studio** 6.0 (SP3), with all optimizations available to the
“release” configuration. Each program was executed in
two modes. In the local mode, the thread is bound to a
specific processor, and all data structures are allocated
using the local-memory allocation policy. The remote
mode uses the remote-memory allocation policy. We
tested two different NUMA configurations. The four-
node configuration uses all four nodes and the switch.
The two-node configuration uses two nodes with a
direct connection between their MCUs.

Figure 5 shows the ratios of remote to local-memory
access times (determined using the Intel processor
performance counters) for the three benchmark programs.
In the two-node system with a direct connection between
the MCUs, remote-memory accesses take two to three
times longer to complete than local accesses. Introducing
the switch to scale the system to 16 processors almost
doubles the latency of remote-memory accesses. In the
worst case that we measured, a factor of 6 slowdown was
observed. These results quantify the penalty for careless
or uncontrolled memory placement in our architecture,

Figure 5

Local vs. remote memory access for two configurations.
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and confirm the necessity of software tuning in the absence
of a remote-memory cache.

Local-memory bandwidth
During our measurements, we noticed several anomalies
in which some programs would perform better if executed
with a small number of threads (4 to 8) spread over
the NUMA system, than they did on an SMP [16].
We report on some memory bandwidth tests on the
basic SMP to quantify the performance of the basic
nodes. For this purpose, we used multithreaded versions
of the programs described in the preceding subsection:
BwMTMemCp, BwMTMemRd, and BwMTMemWr. All
programs were run on a single SMP node, with versions that
used one, two, and four threads with the threads bound to
different processors. We measured the rate at which each
version was able to perform the various operations, as
measured by the Intel performance counters.

Figure 6 shows the results. We measured the number
of bytes per second processed by each program and
normalized the operation bandwidth with respect to
the single-thread case to show a speedup factor. Our
measurements show that the performance does not scale
with the number of processors on the bus. Contention
for the local memory banks is the main reason for this
problem. We expect this problem to last for some time
because the planned increases in bus and memory
bandwidth for SMPs do not match the projected
increases in processor speed.

Local vs. remote memory bandwidth
We also used the programs described in the preceding
subsection to test the ratios of local versus remote
memory bandwidth in order to measure the penalties
associated with the additional hardware and coherence
protocol in the four-node case. We used the four-thread
versions in which the threads are bound to different
processors in one node. We tested two memory-allocation
configurations: local allocation and remote allocation.
Figure 7 shows the results when the operation bandwidth
is normalized to the local-memory allocation policy. The
measurements show that for these benchmarks, the
operation bandwidth is reduced as much as 40% if
memory is allocated remotely. For one program,
BwMTMemWr, there was no noticeable difference
between the two cases. Now, recall that this program
saturates the local memory and does not allow for any
scaling within one node. The same behavior dominates in
this case, and even when memory is allocated remotely,
the bandwidth is effectively dominated by the local bus
contention for memory, and for the contention on the
local buses of the remote-memory bank. This result shows
that the lack of scalability within a node may often mask
the performance penalty of remote-memory access. This

calls for ccNUMA designs with a smaller number of
processors per node and a switch capable of connecting
a large number of nodes to obtain good scalability.

The Splash-II benchmark
We conducted a detailed study of six applications, five of
which are from the Splash-II benchmark suite [17]. The
purpose of this study is to understand the effectiveness of
the RSet implementation when it is used along with the
information provided by the performance monitor card.
The methodology examines the application to profile
important data structures and uses the Opium card to
determine how they are accessed by its threads. The

Figure 6
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Local versus remote memory bandwidth for three programs.

1.2

1

0.8

0.6

0.4

0.2

0
BwMTMemCp BwMTMemRd BwMTMemWr

Local Remote

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. C. BROCK ET AL.

217



information is analyzed, and an RSet is then used to
enforce affinity policies that locate the threads near the
data structures that they use most.

The application suite
The study presented here uses five applications from the
Splash-II benchmark and a legacy implementation of the
three-dimensional fast Fourier transform (3DFFT). The
applications from the Splash-II benchmark are Water-
nsquared, Water-spatial, Ocean-contiguous, Barnes-Hut,
and FMM (a preliminary version of this study has been
published elsewhere [16]). All applications were compiled
using the Microsoft Visual C11** 6.0 compiler. A
detailed description of the applications follows:

● 3DFFT: This application implements a three-dimensional
FFT. There are several large arrays that are shared by
various threads and passed by reference. This program
appears to have been written originally in Fortran and
converted to C at a later date. Consequently, the sharing
patterns and the program logic are obscure.

● Ocean-contiguous: Ocean studies large-scale ocean
movements based on eddy and boundary currents. The
contiguous version implements the grids as three-
dimensional arrays. This data structure allows partitions
to be allocated contiguously and entirely in the local
memory of processors that “own” them, enabling data
locality to be enhanced.

● Water-nsquared: Water-nsquared simulates molecular
dynamics. The threads within this application allocate
many small objects that are scattered throughout the
address space and are linked with one another through
complex data structures.

● Water-spatial: Water-spatial also simulates molecular
dynamics. While the nsquared implementation uses an
O(n 2) algorithm, the spatial version imposes a three-
dimensional grid on the problem domain, resulting
in an O(n) algorithm that is more efficient for larger
numbers of molecules. From a performance-debugging
perspective, the two versions use different data structures
and are fundamentally different applications.

● Barnes-Hut: This application simulates the interaction
of a system of bodies in three dimensions using a
hierarchical N-body method. The main data structure is
an Oct-tree representation of the computational domain.
The leaves of the tree contain the bodies, while the
internal nodes represent cells in space.

● FMM: The fast multipole method (FMM) simulates a
system of bodies in three dimensions over a number of
time steps. FMM uses the same major data structures as
Barnes, but operates on them differently. In particular,
the tree representing the computational domain is
traversed only once up and down per time step,
regardless of the number of bodies, and the accuracy
is controlled by how accurately each interaction is
modeled.

Performance-debugging methodology
Our generic performance-debugging methodology was
to first set up the Opium card to collect information
about the entire address space of the application. We
programmed Opium to monitor all outgoing accesses
from each node and refined this process on the basis
of the collected information. We provide additional
details on our methodology below.

For applications with array-based data structures
(3DFFT and Ocean), we started with a fairly coarse
monitoring granularity and then zoomed down to the
level of cache lines when required. In general, this is the
preferred mode for performance-debugging applications
with regular access patterns. For instance, in 3DFFT, we
programmed only one Opium filter to match all remote-
memory references (read or write) starting from the
beginning of the heap, with a granularity of one memory
page. Figure 8 shows the results from the 3DFFT initial
phase, with two threads working on the program. (We
show the pattern for two threads for simplicity and clarity.
The discussion covers the cases of four, eight, and sixteen
threads that we measured.) As can be seen in the figure,
the data structures are laid out in a uniform manner,
even though the program structure did not reveal this
pattern easily.

The results suggest that the address range consists of six
subranges, where the first and fifth are predominantly
accessed by thread 1, and the second and sixth are
predominantly accessed by thread 2. The third and fourth
ranges are shared by the two threads and contain many

Figure 8

Access patterns for 3DFFT with 4K monitoring granularity.
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hot spots. Following the measurement methodology that
we outlined earlier, we then zoomed on the contested area
to identify the level of sharing that was taking place.

Figure 9 shows the results of the second phase of
measurements, where the granularity was set to a 32-byte
cache line size, with focus on the fourth area. The results
identify a level of sharing in which thread 2 dominated
the accesses. Combining the results of this phase with the
initial results, the Opium card created the case for an
allocation pattern that matched the application. Thus,
instead of modifying the application, we modified the way
memory was allocated to match the application’s need.
The only alternative was to substantially restructure the
application, which was undesirable.

We were able to use a similar process to ascertain the
data access patterns in Ocean. The contiguous version of
Ocean contains a large number of arrays that are accessed
by the different threads during execution. The Opium card
showed that these data structures were divided among
the threads in bands of rows and that interthread sharing
occurred at the edges of the bands. With this information,
we were able to redistribute the data structures so
that each band was allocated with memory local to
the node on which the corresponding thread was
executing.

For applications with complex data structures (Water-
spatial, FMM, Water-nsquared, and Barnes-Hut), our
initial performance-debugging attempts revealed that the
data structures were being uniformly accessed by all of
the threads. To obtain further information, we therefore
padded the structure elements to cache-line boundaries,
permitting us to correlate the Opium information to
specific data-structure elements. This method of

performance debugging is well suited to applications
with irregular access patterns. We illustrate our approach
in greater detail using Water-spatial as an example.

In Water-spatial, the computational threads make a
large number of small memory-allocation requests. This
pattern results in fragmentation of the virtual (and
physical) address space among the various threads in
the application. By analyzing the data (not shown here
because of space limitations), we quickly found that it was
necessary to map the actual virtual addresses to the data
structures being monitored in order to determine the best
way of optimizing the applications. To do so, for each
memory-allocation request, we recorded the calling thread
identifier and the location in the program where it was
made. This information was then used in addition to the
Opium performance counter results to define the identities
of the dynamic data structures allocated. The study quickly
revealed that most of the water molecules would remain
within the zone “assigned” to the thread that created it.
Thus, by simply adjusting the memory-allocation policy to
use the local allocation (i.e., the data comes from the
node on which the calling thread is running), we were
able to improve data-access locality. We used a similar
technique for Water-nsquared.

In Barnes-Hut, using Opium, we were able to quickly
discover a set of arrays that were being accessed by the
threads in a partitioned manner, even though all of
the arrays were allocated by the master thread during
initialization. We partitioned these arrays among the
threads, allocating each partition from the memory that
was local to the executing thread. We used a similar
technique for FMM. For Barnes-Hut, subsequent analysis
using Opium revealed that accesses to the main particle
data structure were distributed irregularly among the

Figure 9

Refined monitoring for 3DFFT at 32-byte cache line size.
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various threads. In order to obtain more information, we
padded the data-structure elements so that each element
occupied a single cache line. Opium then revealed that the
data-structure elements could be divided into two sets—
a heavily accessed set and one for which there were
substantially fewer accesses. At this point, we were unable
to obtain further information without examining the
program. However, we examined the program solely with
respect to the “important” data-structure elements as
identified by Opium. We were then able to ascertain a
grouping for the structure elements that minimized the
number of cache-line transfers.

Performance impact
In the section we discuss the performance impact of
our data restructuring. Table 1 shows the parameters
for each program execution. The program parameters
were chosen such that the total datasets would not fit
into the L2 caches of all 16 processors.

Figure 10 shows the speedup of each application, before
and after the data-structure reorganization derived using
Opium. All speedup numbers were measured with respect
to a single-threaded execution performed using the local
memory-allocation policy. With the exception of Barnes-
Hut, there are two bars for each application. The “orig”
bar shows the speedup for a 16-thread execution with the
striped memory-allocation policy with a stride of one page.
With the lack of affinity information, this allocation is
reasonable as a base case. The “reorg” bar also shows
the speedup for a 16-thread execution, but with the data-
structure allocation reorganized as recommended by the
Opium analysis. For Barnes-Hut, we show an additional
bar called “extra,” in which we examined the program
source armed with the Opium findings to regroup the
program data-structure elements.

The first point to note about the speedup figure is
that for some applications, data restructuring has a
radical impact on performance. For 3DFFT and Ocean,
performance is more than doubled as a result of allocating
memory locally. For FMM and Water-spatial, the
performance improvement is much less dramatic, and the
improvements are negligible for Barnes-Hut and Water-
nsquared.

To explain the variation in performance improvement,
we present in Table 2 the distribution of memory accesses
observed during program execution. The first two columns
show the number of accesses made by the 16 processors
(processor 3 L1 cache) and that made by all of the L2
caches in the system (L2 cache 3 memory). The next
three columns show the number of request packets,
response packets, and total packets in the network
interconnecting the nodes. The last column presents the
total amount of network traffic in bytes per second of
application execution time.2 This is the average
interconnect bandwidth consumed by the application. The
“orig” and “reorg” versions show these characteristics for
the original and the reorganized version of the application.
As discussed earlier, Barnes alone has an “extra” row.

The number of accesses made by the processors varies
among the different versions of the applications. We
implemented synchronization operations through user-
level spin locks. The NT-provided synchronization
constructs are highly inefficient and also make it difficult
to understand application performance. Due to the
suboptimal data-structure layout for the “orig” versions,
the processors reach the barrier synchronization points
in the program at different times. This causes the
early processors that reach a barrier first to execute
substantially more spin operations than the later ones. In
the “reorg” versions of the application, the processors
reach barriers at more or less the same time, leading to a
small number of barrier spin operations. Spin-waiting at
the barriers is particularly high in the case of Water-
nsquared, where some threads take much longer to reach
the barriers than others.

2 Request packets take up 16 bytes, while response packets take up 48 bytes.

Figure 10

Application speedups before and after data reorganization.

16

12

8

4

0

Orig

Reorg

ExtraInfo

Sp
ee

du
p

3DFFT Ocean Water-
spatial

Water-
nsquared

Barnes-HutFMM

Table 1 Program parameters.

Application Parameters Sequential
execution
time (s)

3DFFT 128 3 128 3 128 array 170.58
Ocean-contiguous 514 3 514 grid 17.44
Water-spatial 32K molecules, 5 time steps 178.96
FMM 64K particles, 10 iterations 52.06
Water-nsquared 9261 particles, 5 time steps 1269.9
Barnes-Hut 128K particles, 4 time steps 160.82
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Our NUMA system uses a directory-based cache-
coherence protocol. In a four-node system such as ours, a
memory transaction placed on the bus by a processor can
give rise to multiple network packets. For example, when
a memory location is invalidated by a processor that
is not on its home node, up to five network packets
could be generated. This is why, in some cases, the
number of network packets exceeds the number of
memory transactions placed on the buses by the
16 processors.

For all applications, the “reorg” version sends and
receives fewer network packets than the “orig” version,
illustrating the usefulness of the Opium performance
monitor information. For 3DFFT, Ocean, and Water-
spatial, the reduction is dramatic. The reduction is more
modest for FMM and Barnes-Hut.

Note that a reduction in network traffic does not by
itself result in a lower execution time. For 3DFFT and
Ocean, the substantial network traffic reductions are
matched by corresponding reductions in execution time
for the “reorg” version. However, this is not the case for
Water-spatial. We need to examine two factors in order to
understand this behavior. First, we need to examine the
impact of network traffic on the execution time; second,
we need to examine the computation-to-communication
ratio. It is reasonable to expect that an application with a
small ratio of network traffic to memory transactions will
not be much affected by a reduction in the (already small)
network traffic component. Similarly, it is reasonable to
expect that an application that performs a significant
amount of computation per network packet will improve
only modestly in performance when network traffic is
reduced.

Table 3 illustrates these factors for the applications
under study. The first column shows the number of
network packets per memory-bus transaction. This metric
captures the first factor outlined above. The closer this
number is to zero for an original application, the less
performance improvement we can expect from reducing
network traffic. The next column shows the MFLOPs
executed per second (as opposed to retired per second)
by the application. The last two columns show the
computation-to-communication ratio for each application.
Since all of our applications are floating-point intensive,
we use a FLOP as the basic unit of computation. We
measured these quantities using the processor performance
counters. Since the Pentium II processors in our system
carry out speculative execution, fewer floating-point
operations are retired than are executed by the processor.

Table 3 clearly explains the modest performance
improvement for Water-spatial in spite of the dramatic
reduction in network traffic. While the reduction in
network traffic is several factors more than that for
3DFFT, and the number of network packets per memory
transaction is comparable, Water-spatial executes
substantially more floating-point operations per network
packet and memory transaction. Thus, even though we
were able to reduce the network traffic using the Opium
performance monitor, the bottleneck for this application
is the computation overhead, not the communication
overhead. The lack of any performance improvement for
Water-nsquared, FMM, and Barnes-Hut is also explained by
the measured data. These applications execute such a large
number of floating-point operations per memory transaction
(or network packet) that the reduction in network traffic
brings out no change in performance.

Table 2 Execution characteristics for all applications.

Application Memory accesses
(in 106 transactions)

Network accesses
(in 106 packets)

Network bandwidth
usage

(MB/s)
P 3 L1 L2 3 Mem Req Resp Total

3DFFT Orig 41967 408.46 497.89 308.42 806.31 494.11
Reorg 31867 374.33 76.38 59.2 135.58 216.95

Ocean Orig 6339 31.73 36.98 23.64 60.62 435.03
Reorg 6016 28.11 3.58 1.33 4.91 67.85

Water-
spatial

Orig 34952 29.96 28.16 20.60 48.77 112.11
Reorg 35024 17.56 3.83 2.27 6.10 14.61

FMM Orig 19916 18.96 19.83 13.86 33.69 237.07
Reorg 19044 18.50 12.27 8.24 20.51 152.59

Water-
nsquared

Orig 219836 31.88 26.79 19.50 46.29 14.36
Reorg 219816 31.95 17.56 13.54 31.09 9.83

Barnes-
Hut

Orig 29534 24.75 26.62 18.19 44.80 109.32
Reorg 29488 24.92 21.25 14.70 35.95 86.90
Extra 29195 22.40 17.87 12.04 29.92 75.99
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Effects of local-memory contention on application
performance
We ran several applications with a limited number of
threads (four) using different configurations. In one
configuration, all threads are placed in the same node. In
a second configuration, the threads are distributed over
two nodes, such that each node has two threads. And in
the third configuration, the threads are distributed over
four nodes, such that each node has one thread running.
For some applications, the local-memory bandwidth
limited the performance of the versions where all threads
were colocated in the same node. A detailed study of
the experiments is available elsewhere [16]. The general
conclusion that we drew from this study is that when the
applications are modified to intelligently use RSets and
the information collected from the performance card,
remote-memory accesses on the ccNUMA configurations
have less of an effect. Therefore, the individual threads
benefit from having less contention for local memory in
configurations where there are one or two threads per
node. This result confirms our earlier conclusion about the
need for having a smaller number of processors per node,
with more nodes connected over the interconnecting
switch.

Web-serving performance
We used an industry-standard benchmark to measure
the performance of the ccNUMA prototype when it is
operating as a Web server. The benchmark consists of a
mix of static and dynamic data requests in a 7 to 3 ratio.
During the tests, each SMP node was equipped with four
100Mb/s Ethernet network cards and four local 9GB SCSI
disks. We used the software striping facility of Windows
NT to provide better bandwidth for the benchmark

logging. Logging was performed on a file system that was
striped over two disks, while the benchmark data were
stored in a file system that was striped over the other two
disks. Throughout the test, the network load was observed,
and in all measurements, it never reached saturation nor
was the performance network bound.

The experimental setup consists of a 100Mb/s switched
Ethernet network with 48 workstations serving as the
clients for the purpose of the benchmark. Each client was
equipped with a 400-MHz Intel Pentium II processor and
128 MB of main memory. All clients ran Windows NT 4.0,
the Terminal Server Edition with Service Pack 3, build
1381. The Web-server benchmark used the Internet
Information Server, Microsoft’s built-in Web server. We
incorporated all optimizations into the system’s registry,
as recommended by Microsoft.

Figure 11 shows the performance of the Web-serving
benchmark, measured in number of HTTP connections
per second. The results are shown for four points,
representing one node (SMP basic performance), two
nodes (eight processors and 2 GB of RAM only), three
nodes (12 processors and 3 GB of RAM), and four nodes
(the fully configured NUMA system with 16 processors
and 4 GB of RAM). The results show that the scalability
of the system with respect to the Web benchmark is
adequate but not compelling. In particular, increasing the
number of processors from 8 to 12 results in an increase
of only 100 connections, and a similar increase in
performance occurs when the number of processors rises
from 12 to 16. We then analyzed the performance by
running the same benchmark with different configurations
in order to understand the causes of these problems.

Figure 12 shows the results of running the benchmark
for the basic SMP but with different numbers of

Table 3 Interconnect vs. memory bus traffic and computation vs. communication ratios.

Application Network packets per
memory transaction

MFLOPs
per second

MFLOPs per 106

memory transactions
MFLOPs per 106

network packets

3DFFT Orig 1.97 9.01 1.07 0.54
Reorg 0.36 20.65 1.16 3.21

Ocean Orig 1.91 4.49 0.75 0.39
Reorg 0.17 7.01 0.84 4.81

Water-spatial Orig 1.63 52.27 32.10 19.72
Reorg 0.35 57.64 54.77 157.67

FMM Orig 1.78 42.72 18.66 10.50
Reorg 1.11 46.12 19.12 17.25

Water-nsquared Orig 1.45 55.74 151.41 104.27
Reorg 0.97 55.86 151.07 155.25

Barnes-Hut Orig 1.81 19.96 11.37 6.28
Reorg 1.44 20.17 11.29 7.83
Extra 1.34 20.69 12.56 9.41
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processors. The results show that the performance of the
basic SMP does not scale, and we attribute this problem
to the poor local-memory bandwidth and the resulting
contention that occurs when the number of processors
increases on the same local bus. As can be seen from the
figure, the basic configuration scales only from one to two
processors. This is similar to the results from the synthetic
benchmarks showing the scalability of the memory
bandwidth of the basic architecture.

To confirm that the performance is limited by local-
memory bandwidth, we conducted an experiment in which
the number of processors per node is reduced. As
expected, the reduction in local-memory contention
improved performance for the same number of processors.
That is, a ccNUMA architecture containing one processor
per node (for a total of four processors) outperforms an
SMP, despite having processors sharing data across the
ccNUMA switch. We ran similar experiments for two
ccNUMA systems containing eight processors, with
all eight processors coming from two nodes in one
configuration and from four nodes in the other. The
results confirm the superiority of the configuration with
fewer processors per node, despite the fact that more
remote memory access occurs. These results are in line
with those of the synthetic benchmarks and the Splash-II
benchmarks. They certainly suggest a fresh look at how
Intel-based ccNUMA systems should be constructed. Note
that throughout the performance evaluation for the Web
workloads, the main memory was never saturated, and in
fact it never reached more than 300 MB per node in any
configuration.

7. Related work
Commercial interest in ccNUMA increased with the
demonstration of the practicality of cache coherence
through an interconnect, and the performance limitations
of SMP systems. Several research projects contributed
to this interest, including the Stanford DASH [18] and
FLASH [19] machines, the MIT Alewife [20] machine,
and the University of Toronto NUMAchine [21].
Chapter 8 of the famous text on computer architecture
[3] by Hennessy and Patterson provides a general
discussion of cache-coherent architecture, while the
book by Pfister [1] is a survey of a variety of architectures
including NUMA and various types of clusters. The recent
text by Culler et al. [22] offers the most detailed textbook
coverage of the topic of which we are aware, including
not only the hardware and software aspects of SMP and
ccNUMA systems but also the performance-evaluation
techniques that are applied to them.

The research efforts have been accompanied by
extensive commercialization of ccNUMA machines,
including systems such as the Silicon Graphics Origin**
[7], the IBM NUMA-Q* [5], the Data General Aviion**

2500 and NUMALiiNE** [4], HP nuSMP series, and the
Unisys ES7000 Series [8]. Our hardware prototype is
based on an extension of the Fujitsu Synfinity interconnect
used in Fujitsu’s Teamserver [9]. It is worth observing that
our work began prior to IBM’s acquisition of Sequent and,
unlike the Sequent product line, is based on the extension
of standard high-volume server hardware rather than the
engineering of a NUMA-specific system.

Our hardware includes the Opium card in each node of
our prototype. At a high level the measurement facilities
of the Opium are similar to those of the Princeton
SurfBoard, although the overall environments are quite
different. In particular, the Princeton board was developed
for the SHRIMP project, which implements an abstraction
of distributed shared memory over a cluster system rather
than a ccNUMA system [23, 24]. However, both share the
overall goal of understanding the communication pattern

Figure 11

Web performance in HTTP connections per second.
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Web performance of the basic SMP.
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between the nodes of the system using data gathered
during program execution by a noninvasive hardware
probe.

Unlike most studies of ccNUMA machines, we use
Windows NT 4 as one of the operating systems, and
indeed, as the primary focus of our work. While UNIX
is still the most commonly studied operating system on
such machines, a number of recent systems, including
the Sequent NUMA-Q and the Fujitsu system that our
hardware extends, support Windows NT. However,
Windows NT lacks some of the affinity support that we
find to be necessary for good application scalability on a
ccNUMA, and our work demonstrates the general need
for affinity scheduling for processes and memory.

The programs that we study and whose performance we
attempt to improve are taken from the Splash-II parallel
processing benchmark [17], which is commonly used in
both experimental and simulation studies. However, these
are by no means the only types of applications of interest,
and there have recently been a number of studies
undertaken that use more commercially oriented
benchmarks [25, 26] such as those from the Transaction
Processing Performance Council [27].

This study uses the data collected using our
instrumentation hardware to improve the overall locality
of the programs being run through optimization of the
source code. In this, it parallels some of the research on
profile-based optimization. Our work relies on manually
using the data to improve the source code of the
application, in contrast to the Morph environment [28].

The synthetic benchmark study reported here uses a
subset of a suite of programs developed as a derivative
of the Hbench-OS suite of programs from Harvard,
which were used in a decompositional study of system
performance by Aaron Brown [29]. These, in turn, were
based on a predecessor suite of programs, Lmbench [15].
However, all of the previous work was done on UNIX or
UNIX-like systems, and all of it was restricted to single-
stream and single-threaded tests. Our work includes a port
to the native Win32 interfaces of Windows NT, the use of
our affinity support, and the introduction of multi-stream
tests to measure the effects of contention.

8. Conclusions
We have described our experience with building an Intel-
based ccNUMA system using commodity hardware and
software components, with a small add-on to scale a
system that was built for an eight-way configuration to
a 16-way ccNUMA one. Our results point out that the
local-memory bandwidth often limits the scalability in
performance; one would expect the effects of remote-
memory accesses to dominate. According to our study, a
good design point for future systems would be to reduce

the number of processors connected directly by a bus
within a node, but to increase the number of nodes
connected by the switch.

Our design included an innovative hardware–software
approach for application tuning, based on a hardware
assist in the form of a performance-monitoring card, and
a software library implementing a new abstraction called
the RSet. The card provides a nonintrusive means for
collecting performance data about applications, and we
have shown that its use has been successful in optimizing
several applications. The RSet abstraction, on the other
hand, allows the programmer to specify affinity and
express control over resource allocation in a hardware-
independent manner. The implementation of the concept
on top of Windows NT used a device-driver interface
along with concealing the true amount of memory from
the system. This combination allowed applications to
directly control the data placement without having to
modify the operating system source code. We have also
implemented basic support for partitioning, both static
and dynamic, and ported two other operating systems
to the hardware.

In retrospect, the simplicity of the design and building
on top of existing hardware and software components
allowed a team of relatively small size to conduct the work
described in this paper for a period of about two years.
The resulting performance was not ideal, but it was more
than adequate for several applications, including
commercially oriented Web serving. Ultimately,
such machines are desirable for the ease of system
management, workload consolidation and isolation, and
the ability to partition the hardware to fit installation
needs. We believe that the approach used in this
experiment should be considered as a serious option
for situations in which time to market and costs are of
paramount importance and performance requirements are
not too stringent. This provides an interesting design point
with respect to price–performance tradeoffs.

Acknowledgments
We are indebted to many individuals for their support and
encouragement, including David Bradley, Steven Depp,
Patricia Genovese, Peter Hortensius, Thomas Jeremiah,
and Joseph McGovern from the IBM Personal Systems
Institute; and Rick Harper, Richard Oehler, Basil Smith,
and Marc Snir from IBM Research. Tim Biesecker, Willie
Jimenez, Marisa Mace, and Bain Weinberger from the
Austin Research Laboratory provided technical and
administrative support. We also received valuable
technical support from Jeff Smith in preparing our
Windows NT port. Finally, we would like to thank
HAL Computers (a unit of Fujitsu) for the MCU hardware
and the excellent support that we received.

B. C. BROCK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

224



*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation, Intel Corporation, The Santa Cruz Operation,
Inc., Fujitsu Ltd., The Open Group, Silicon Graphics, Inc., or
Data General Corporation.

References
1. G. F. Pfister, In Search of Clusters, Second Edition,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1998.
2. D. Solomon, Inside Windows NT, Second Edition,

Microsoft Press, Redmond, WA, 1998.
3. J. L. Hennessy and D. A. Patterson, Computer

Architecture: A Quantitative Approach, Second Edition,
Morgan Kaufmann Publishers, San Francisco, 1996.

4. Data General, “Data General’s NUMALiiNE
Technology: The Foundation for the AV 25000
Server,” http://www.dg.com/numa.

5. T. Lovett and R. Clapp, “STiNG: A CC-NUMA
Computer System for the Commercial Marketplace,”
ISCA ’96, Proceedings of the 23rd Annual IEEE
International Symposium on Computer Architecture, 1996,
pp. 308 –317.

6. J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA
Highly Scalable Server,” ISCA ’97, Proceedings of the 24th
Annual IEEE International Symposium on Computer
Architecture, 1997, pp. 241–251.

7. Silicon Graphics Corporation, “Origin 3000,”
http://www.sgi.com/origin/3000.

8. UNISYS Corporation, “ES7000 Series,”
http://www.unisys.com/hw/servers/enterprise/7000/default.asp.

9. W. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki, and
W. Wilcke, “The Synfinity Interconnect Architecture: A
Cost-Effective Infrastructure for High-Performance
Servers,” ISCA ’97, Proceedings of the 24th Annual IEEE
International Symposium on Computer Architecture, 1997,
pp. 253–262.

10. J. B. Chen, “The Impact of Software Structure and Policy
on CPU and Memory System Performance,” Ph.D. Thesis;
available as Technical Report CMU-CS-94-145, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, 1994.

11. J. K. Flanagan, B. Nelson, J. Archibald, and K. Grimsrud,
“Bach: BYU Address Collection Hardware: the Collection
of Complete Traces,” Proceedings of the 6th International
Conference on Modeling Techniques and Tools for
Computer Performance Evaluation, Edinburgh, Scotland,
September 1992, pp. 51– 65.

12. B. Verghese, S. Devine, A. Gupta, and M. Rosenblum,
“Operating System Support for Improving Data Locality
on CC-NUMA Compute Servers,” Proceedings of the 7th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996, pp.
279 –289.

13. J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH:
Stanford Parallel Applications for Shared-Memory,”
Computer Architecture News 20, No. 1, 5– 44 (1992).

14. A. B. Brown and M. I. Seltzer, “Operating System
Benchmarking in the Wake of lmbench: A Case Study
of the Performance of NetBSD on the Intel x86
Architecture,” Proceedings of the 1997 ACM SIGMETRICS
International Conference on the Measurement and Modeling
of Computer Systems, June 1997.

15. L. McVoy and C. Staelin, “lmbench: Portable Tools for
Performance Analysis,” Proceedings of the 1996 USENIX
Technical Conference, January 1996, pp. 279 –294.

16. B. Brock, G. Carpenter, E. Chiprout, E. Elnozahy, M.
Dean, D. Glasco, J. Peterson, R. Rajamony, F. Rawson,
R. Rockhold, and A. Zimmerman, “Windows NT in a

ccNUMA System,” Proceedings of the 3rd USENIX
Windows NT Symposium, 1999, pp. 61–72.

17. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” ISCA ’95, Proceedings
of the 22nd Annual IEEE International Symposium on
Computer Architecture, 1995, pp. 24 –36.

18. D. E. Lenoski and W. Weber, Scalable Shared-Memory
Multiprocessing, Morgan Kaufmann Publishers, San
Francisco, 1995.

19. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy,
“The Stanford FLASH Multiprocessor,” ISCA ’94,
Proceedings of the 21st Annual IEEE International
Symposium on Computer Architecture, 1994, pp. 302–313.

20. A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D.
Kranz, J. Kubiatowicz, B. H. Lim, K. Mackenzie, and D.
Yeung, “The MIT Alewife Machine: Architecture and
Performance,” ISCA ’95, Proceedings of the 22nd Annual
IEEE International Symposium on Computer Architecture,
June 1995, pp. 2–13.

21. A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G.
Lemieux, K. Loveless, N. Manjikian, S. Srbljic, M. Stumm,
Z. Vranesic, and Z. Zilic, “Design and Implementation of
the NUMAchine Multiprocessor,” Proceedings of the 35th
IEEE Design Automation Conference, June 1998, pp.
66 – 69.

22. D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, Morgan
Kaufmann Publishers, San Francisco, 1999.

23. Y. Zhou, L. Iftode, and K. Li, “Performance Evaluation
of Two Home-Based Lazy Release Consistency Protocols
for Shared Virtual Memory Systems,” Oper. Syst. Rev. 30,
75– 88 (1996).

24. S. C. Karlin, D. W. Clark, and M. Martonosi,
“SurfBoard—A Hardware Performance Monitor for
SHRIMP,” Technical Report TR-596-99, Princeton
University, Princeton, NJ, 1999.

25. K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker, “Performance Characterization of a Quad
Pentium Pro SMP Using OLTP Workloads,” ISCA ’98,
Proceedings of the 25th Annual IEEE International
Symposium on Computer Architecture, 1998, pp. 15–26.

26. P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso, “Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processors,”
Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1998, pp. 307–318.

27. Transaction Processing Performance Council,
http://www.tpc.org.

28. X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D.
Smith, “System Support for Automatic Profiling and
Optimization,” Oper. Syst. Rev. 31, 15–26 (1997).

29. A. B. Brown, “A Decompositional Approach to Computer
Systems Performance Evaluation,” B.A. Thesis, Harvard
University, Cambridge, MA, April 1997.

Received September 11, 2000; accepted for publication
April 3, 2001

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. C. BROCK ET AL.

225



Bishop C. Brock IBM Research Division, Austin Research
Laboratory, 11400 Burnet Road, Austin, Texas 78758
(bcbrock@us.ibm.com). Mr. Brock is a Research Staff
Member in the Tools and Technology Department of the IBM
Austin Research Laboratory. He received an M.S. degree in
computer science from the University of Texas at Austin in
1987 and joined IBM in 1997. Mr. Brock has co-authored
numerous publications in the areas of automated reasoning,
formal verification of hardware, and system design; he has
filed several patents related to hardware performance
monitoring, security, and power-management techniques
for servers and embedded systems.

Gary D. Carpenter IBM Research Division, Austin Research
Laboratory, 11400 Burnet Road, Austin, Texas 78758
(carpentg@us.ibm.com). Mr. Carpenter is a Research Staff
Member at the IBM Austin Research Laboratory. He joined
IBM in 1983 after receiving a B.S. degree in electrical
engineering from the University of Kentucky. Since joining
IBM Mr. Carpenter has worked in the areas of hardware
system architecture, system design, and analog circuit and
logic design. Currently his focus is research on energy-efficient
circuits, processors, and systems.

Eli Chiprout Intel Corporation, 5000 W. Chandler Boulevard,
Chandler, Arizona 85226. Dr. Chiprout is a Senior Staff CAD
Engineer in the Desktop Products Group in Austin, Texas,
and Chandler, Arizona. He has worked in the areas of
computer-aided design for advanced circuits, numerical
algorithms, microprocessor design, and operating systems.
Dr. Chiprout has received an IBM Research Recognition
Award; he is the author of a book and multiple journal
and conference papers.

Mark E. Dean IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (deanm@us.ibm.com). Dr. Dean is currently Vice
President of Systems in IBM Research. He is responsible for
the research and application of systems technologies from
circuits to operating environments. Dr. Dean is a member of
the National Academy of Engineering and an IBM Fellow.
His most recent awards include the Black Engineer of the
Year Award, the NSBE Distinguished Engineer Award, and
induction into the National Inventors’ Hall of Fame. He has
more than 30 patents or patents pending. Dr. Dean received a
B.S.E.E. degree from the University of Tennessee in 1979, an
M.S.E.E. degree from Florida Atlantic University in 1982, and a
Ph.D. in electrical engineering from Stanford University in 1992.

Philippe L. De Backer IBM Research Division, Austin
Research Laboratory, 11400 Burnet Road, Austin, Texas 78758
(pdb@austin.ibm.com). Mr. De Backer is a member of the
Research Staff of the IBM Austin Research Laboratory. He
received an engineering degree at L’Ecole Centrale des Arts
et Manufactures de Paris and joined IBM in France. Mr.
De Backer has worked on AIX; he joined IBM Research in 2000.

Elmootazbellah N. Elnozahy IBM Research Division,
Austin Research Laboratory, 11400 Burnet Road, Austin, Texas
78758 (mootaz@us.ibm.com). Dr. Elnozahy received his Ph.D.
in computer science from Rice University in 1993. From 1993

to 1997 he served as an Assistant Professor at Carnegie
Mellon University. In 1997, he joined the IBM Austin
Research Laboratory, where he currently manages the
System Software Department. His research interests include
distributed computing, fault tolerance, networking, and
operating systems. He holds three patents and has published
more than 25 papers on distributed systems. His research in
fault tolerance and reliable file systems has influenced several
industrial products.

Hubertus Franke IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (frankeh@us.ibm.com). Since 1993 Dr. Franke has
been a Research Staff Member at the IBM Thomas J. Watson
Research Center, where he currently manages the Enterprise
Linux group. He contributed to the IBM SP2 system software
and architecture, the K42 operating system, the development
of Linux for highly scalable architectures, and the MXT Linux
support. Dr. Franke has received multiple IBM Outstanding
Technical Achievement and Outstanding Innovation Awards,
and he has published more than 50 papers and 13 patents.
He received a first-in-class Diplom. in Informatik from the
Technical University of Karlsruhe, Germany, in 1987 and
a Ph.D. degree in electrical engineering from Vanderbilt
University in 1992. His research interests include architectures
and operating systems for highly scalable systems, distributed
systems, and system security. He is a member of the IEEE.

Mark E. Giampapa IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (giampapa@us.ibm.com). Mr. Giampapa is a
member of the Scalable Parallel Systems Department, where
he holds a technical leadership position in the design and
development of a parallel operating environment for a
massively scalable parallel ultracomputer. After graduating
from Columbia University with a bachelor’s degree in
computer science in 1984, he joined IBM Research to work
in the areas of collaborative and distributed processing, and
has focused his research on distributed-memory and shared-
memory parallel architectures and operating environments.
Mr. Giampapa has received three IBM Outstanding Technical
Achievement Awards for his work in distributed processing,
simulation, and parallel operating systems. He holds ten
patents, with several pending, and has published ten papers
on the subject.

David Glasco Newisys, Inc., 11612 Bee Caves Road, Austin,
Texas 78738 (david.glasco@newisys.com). Dr. Glasco received
his Ph.D. in electrical engineering from Stanford University in
1994. He has worked in the areas of highly scalable machine
architectures, ccNUMA protocol development, microprocessor
design, and system architecture. He is the author of multiple
conference papers and holds several U.S. patents.

James L. Peterson IBM Research Division, Austin
Research Laboratory, 11400 Burnet Road, Austin, Texas 78758
(peterson@austin.ibm.com). Dr. Peterson is a member of the
Research Staff of the IBM Austin Research Laboratory.
He received a Ph.D. from Stanford University in 1974 and
then joined the Department of Computer Sciences of the
University of Texas at Austin. Dr. Peterson joined IBM in
1989. He has published four books (including the popular
Operating Systems Principles textbook) and a number of
papers on computers, software, algorithms, and systems.

B. C. BROCK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

226



Ram Rajamony IBM Research Division, Austin Research
Laboratory, 11400 Burnet Road, Austin, Texas 78758
(rajamony@us.ibm.com). Dr. Rajamony received his Ph.D.
from Rice University in 1998 and his B. Tech. from the Indian
Institute of Technology, Madras, in 1989. He is primarily
interested in experimental systems, focusing in the areas of
server power management, networking, operating systems,
and web services. Dr. Rajamony has published more than ten
papers at venues such as USENIX, ISCA, and SIGMETRICS.
According to Citeseer, his publications have been cited more
than 300 times. He also received the Best Student Paper
Award at SIGMETRICS in 1997.

Rajan Ravindran IBM Global Services India Pvt. Limited
(rajancr@us.ibm.com). Mr. Ravindran is a Software Engineer;
he has been with IBM since 1998. He did his postgraduate
work in computer science at Madurai Kamaraj University,
India. His work has ranged from product evaluation to
implementation.

Freeman L. Rawson IBM Research Division, Austin
Research Laboratory, 11400 Burnet Road, Austin, Texas 78758
(frawson@us.ibm.com). Mr. Rawson joined IBM in 1973 and
spent many years working on the development of operating
systems and related software in San Jose, Boca Raton, and
Austin before joining the Austin Research Laboratory in 1996.
His interests are in systems architecture and software, systems
management, and Internet-related technologies.

Ronald L. Rockhold WhisperWire, Inc., 8240
N. MoPac Expressway, Suite 200, Austin, Texas 78759
(ron.rockhold@whisperwire.com). Dr. Rockhold joined
WhisperWire in 2000 as a Senior Architect. He was previously
a Research Staff Member in the IBM Research Division in
Austin, Texas, where he focused on operating system issues
for NUMA systems. Dr. Rockhold is also an Adjunct
Professor at the University of Texas at Austin, currently
teaching courses in object-oriented programming and design.
He received his Ph.D. in computer science from the Florida
Institute of Technology in 1993.

Juan Rubio The University of Texas at Austin, Department of
Electrical and Computer Engineering, ENS 143, Austin, Texas
78712 (jrubio@ece.utexas.edu). Mr. Rubio received his B.S.
degree in electrical engineering from the Universidad Santa
Maria, La Antigua, Panama, in 1997, and his M.S. degree in
computer engineering from the University of Texas at Austin
in 1999. He is currently a Ph.D. candidate at the University
of Texas at Austin, where he is investigating hardware and
software architectures to improve the performance of
transaction-processing workloads. His research interests
include the design of microprocessors and memory systems
for high-performance concurrent architectures.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. C. BROCK ET AL.

227


