MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

MUSE — A SYSTOLIC ARRAY FOR ADAPTIVE
NULLING WITH 64 DEGREES OF FREEDOM,
USING GIVENS TRANSFORMATIONS
AND WAFER SCALE INTEGRATION

CM. RADER D.L. ALLEN
D.B. GLASCO C.E. WOODWARD
Group 27 Group 23

TECHNICAL REPORT 886

18 MAY 1990

Approved for public release: distribution is unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

This report describes an architecture for a highly parallel system of compu-
tational processors specialized for real-time adaptive antenna nulling computations
with many degrees of freedom, called MUSE, and a specific realization of MUSE
for 64 degrees of freedom. Each processor uses the CORDIC algorithm and has been
designed as a single integrated circuit. Ninety-six such processors working together
can update the 64-element nulling weights based on 300 new observations in only
6.7 ms. This is equivalent to 2.88 Giga-ops for a conventional processor. The com-
putations are accurate enough to support 50 dB of signal-to-noise improvement in
a sidelobe canceller. The connectivity between processors is quite simple and per-
mits MUSE to be realized on a single large wafer, using restructurable VLSI. The
complete design of such a wafer is described.

i

3.

TABLE OF CONTENTS

ABSTRACT il
LIST OF ILLUSTRATIONS vii
LIST OF TABLES ix
INTRODUCTION 1
VOLTAGE DOMAIN NULLING WITH GIVENS TRANSFORMATIONS 3
CORDIC REALIZATION OF GIVENS TRANSFORMATION 15
CORDICS IN SYSTOLIC ARRAY FOR UPDATING A CHOLESKY MATRIX 21
4.1 Supercell 21
4.2 Simple Systolic Array 24
4.3 Latency 24
4.4 Forgetting Factor 26

AN EFFICIENT SYSTOLIC ARRAY WITH LATENCY CONTROLLED INTER-

LEAVING 27
SIMULATION TO SELECT PARAMETERS 33
APPLICABILITY OF RESTRUCTURABLE VLSI 37
7.1 Restructurable Very Large Scale Integration 37
7.2 Adapting MUSE for RVLSI 38
7.3 Relationship of Cell Yield to System Yield 39
USING CORDIC CELLS TO SOLVE LINEAR EQUATIONS FOR WEIGHTS 43
8.1 Mathematical Preliminaries 43
8.2 Description of the Q-operation 45

8.3 Summary of Revised MUSE Control and Timing 47

9. RVLSI CELL DESCRIPTION 49

9.1 Cell Datapath 49
9.2 Control 51
10. WAFER SCALE CONNECTIONS 53
10.1 Interconnection 53
10.2 Testing During Restructuring 59
11. MUSE INVESTIGATION TEST EQUIPMENT (MITE) 59
11.1 Overview 59
11.2 MITE Architecture 60
11.3 Input Data Memory and Control 60
11.4 Output Data Memory and Control 61
11.5 User Interface Software 62
12. SUMMARY 65
APPENDIX A - CREATION OF DATA SETS WITH CONTROLLED CONDITION
NUMBER AND ACHIEVABLE NULLING PERFORMANCE 67
APPENDIX B - TESTING A MUSE SUBSET 71

REFERENCES 73

vi

Figure
No.

2-1
2-2

3-1

3-2

3-3
4-1
4-2

7-1
7-2

9-1
10-1
10-2

10-3

10-4

11-1
11-2
11-3

B-1

LIST OF ILLUSTRATIONS

Cartoon of typical adaptive nulling system

Eight successive unitary transformations which zero out the four element
tacked-on vector

Achieving rotation through ¢ using minirotations through the special angles
+£,

Rotation through ¢ using minirotations through the special angles ¢, using
one correction gain

Pipelined CORDIC circuit

A CORrDIC supercell

Systolic array to update a Cholesky matrix
Global architecture of folded systolic array

Local communication within folded systolic array

Scenarios and performance for ideal nulling and for simulated hardware pa-
rameter choices

Expected wafer yvield versus CORDIC cell and memory vield

Expected system vield versus CORDIC cell and memory yield, using best two
of ten wafers

Datapaths of CORDIC computation chip
MUSE supercell connections

Symbolic bundled interconnections of eight MUSE supercells in two wiring
channels

Link field for an interconnect channel. The stubs are labeled for their even-
tual cell ports above or below the channel

Step-by-step connection of supercells of a MIUSE wafer. The active test track
at each step is marked by a heavy line; inactive ones by light lines

Photograph of MUSE Investigation Test Equipment (MITE)
MUSE Investigation Test Equipment

Output memory and control

4 x 4 adaptive problem imbedded in 10 x 10 framework

vil

Page

12

16

16
18
23
25
28
31

35
41

41
50
54

57

S7

58
60
61
62

71

-

1. INTRODUCTION

When an array of N antenna elements is subject to undesired interference, such as co-channel
interference or jamming plus the thermal noise in each of the N receivers. the interference power
can be reduced, relative to the power in some desired signal, by forming a suitable weighted sum of
the waveforms observed on all the antenna elements as the system output. This is called nulling.
In many instances the choice of suitable weights must be made adaptively with time. The optimum
choice of weights, in the sense that the signal-to-interference ratio observed in the system output
is maximized, is the solution to a well studied least-squares problem. The number of arithmetic
steps required to solve this least-squares problem. almost independent of the algorithm chosen,
is proportional to the cube of the number of antenna elements. Furthermore, in the presence of
interference that may change with time, it is necessary to perform the adaptive weight determination
repetitively and in real time.

When the antenna is on board a moving spacecraft, the combination of a real-time requirement
driven by the satellite motion and the.cubic dependence of the computational cost of adaptive weight
determination gives a limit to the number of antenna elements that may practically be nulled. A
previous study of this computational cost [1] set this limit at about N = 26, based on an assumed
conventional digital signal processing architecture. Such a limitation is in no sense absolute, since
it depends on what resources we are willing to allocate to a nulling processor. However, because the
difficulty of the nulling computation grows as N3, simply using more resources is not an efficient
way to handle a large number of antennas.

In this technical report, a specialized adaptive nulling processor called MUSE,! which is capable
of determining the weights for N = 64 antenna elements. is described. Due to its novel architecture,
it may be realized compactly using restructurable wafer scale integration; it would then be the size
of the square inscribed in a 5-in-diam. circle. MUSE is not only substantially smaller and lighter
than a conventional processor, but it also will use substantially less power. Although the MUSE
processor is specialized for N = 64 antennas, the design concept of MUSE can be applied to design
a similar processor for an antenna array with either more or fewer elements.

In the next section there is a brief explanation of the mathematics of adaptive nulling and
the method of voltage domain computation of a Cholesky factor using Givens transformations. In
section 3, there is an explanation of CORDIC rotations and a demonstration of how they are suitable
for realizing the Givens transformations needed in updating a Cholesky factor. In section 4, the
idea of a “naive” systolic array of computing elements. each of which is composed of three CORDIC
rotation cells operating together, is developed. So connected, an array of computing elements
is capable of sharing the work of updating a Cholesky factor, which is the largest part of the
computational task. However, it is relatively inefficient. In section 5, we show how to modify the
systolic array to make it 100 percent efficient for the Cholesky update task, using a technique which
is called latency-controlled interleaving. In section 6, the parameter choices for the CORDIC cell,
influenced by the specific system goals, are explained. A simulation used to motivate the choice of

1 MUSE is an acronym which stands for Matrix Update Systolic Experiment.

2. VOLTAGE DOMAIN NULLING WITH GIVENS TRANSFORMATIONS

Figure 2-1 is a cartoon of a typical adaptive nulling svstem. The N antenna elements each
produce a waveform that is assumed to be down-converted, sampled. and digitized. At the n-th
sampling instant a complex number z,, comes from the ith antenna. All the antennas are assumed
to be sampled at the same instant, so we may collect together the samples from the same sampling
instant into a column vector X (n). These vector samples are passed to the right, where the nulling
takes place, and some samples are also passed down to where the adaptation takes place.

144248-1

X1n

X 2n

X(n) y(n) = W™ X(n)

>
VI'V

VInIV X3n X o O .
V||IV

1=
[}

X Nn

lllllllllllllllllll -
~ soLve [0 J}!
_ 0 1l
H [x - Liw= | :

]| L. L :

] k-1 k for W 1 “
" _
] MUSE FUNCTION - DETERMINE W .“

Figure 2-1. Cartoon of typical adaptive nulling system.

The adapted weights are also collected into a column vector, which will be labeled as wW.
Although W~ will be time-varying. it will not be recomputed for every sampling interval. A block is
defined as the interval within which ¥~ will be held constant. The nulled output, y(n), a scalar, is
formed by using weights 11" on the vector X (n). We can use the vector notation

y(n) = W"X(n),

where ()" means Hermitian transpose. This notation implies that we actually multiply the elements
of X(n) by the complex conjugates of the components of 1.

In Figure 2-1 the adaptation process involves samples X (n) and also a lower triangular matrix,
Ly. which is regularly updated and then used to determine 11". The process of adaptation will now
be explained.

Within each block. the optimization of ¥~ is with respect to the statistics of interference
appropriate to that block. The statistics that matter are the correlations of interference observed
from one antenna element to another, arranged into a matrix R. A mathematical description of
the nulling system’s performance will refer to this correlation matrix of the interference, which is
generally not known in practice since it is a statistical expectation.

R=¢(J(n)J"(n))
where J(n) is the interference component of X (n). R is never perfectly known for two reasons:

o One sees the interference and the desired signal at the same time as an insep-
arable sum.

e One has neither the time to gather enough samples nor the computational
resources to use all the samples available to estimate R perfectly.

We are going to make the simplifying assumption that although the observed antenna signals
X (n) contain both desired signals and interference, the desired signals are very much weaker than
the interference and may be neglected in forming the correlation matrix. This simplifying assump-
tion is reasonable because a radar designer always tries to get by with the least possible transmitter
power compatible with detecting a target after signal processing. Since signal processing enhances
the target return relative to interference, it follows that the designer will have chosen the transmit-
ter power small enough that the target return before any signal processing will be below the noise.
Therefore, the first limitation is not a problem! and only the second is serious. A limited amount of
data must be used to obtain an estimate of R for each block and then, since R is changing, another

limited set of data may be used each time R is updated, and so on.

Let us therefore collect together all the samples of X (n) that we intend to use in determination
of “optimum” weights for a given block and refer to this collection of data as X. There is no
implication that all the samples used come from within the given block — we actually envision using
samples from within a sliding window. If the number of samples used is A/ and each sample is an
N element vector, it is natural to arrange the M vectors into a matrix of M columns and N rows.
The estimate of the correlation matrix based on this matrix of raw data is

A1

R=—XX"
M X

! This argument assumes that only small targets are to be detected. If a mix of small and
large targets are sought, it may not be appropriate to neglect the largest targets when estimating
interference statistics.

e A e

The matrices L1 and Ly in Figure 2-1 are instances of L.

Having made this sequence of transformations we can write

1 1
—XX'"=R=-LIL"
M R 1Y

and then the linear equations we must solve for 1" take the simpler form
LL"W = AS.

The known constant Al may be absorbed into the steering vector S and is hereafter omitted. (Note
that since 11" is the solution to a set of linear equations, if S is scaled by any constant, we scale
the solution W’ by the same constant. However, the signal-to-interference ratio in |$|\:MMA3 is
unchanged by multiplying B by a scale factor.)

We can solve LL"II” = S in two easy steps. First define an intermediate vector variable Y
defined by
L' =Y, (2.1)

so that Y is the solution to

LY = 8. (2.2)

-

Y and then. having found Y, we are in position to solve
Equation (2.1) for W’. Both these equations are easier to solve than general matrix/vector equations
because the matrices involved are triangular. If we had to solve a matrix/vector equation involving a
general N x N square matrix, we would expect to require a number of arithmetic steps proportional
to N3. However, when the matrix is triangular, the straightforward method of solution requires a

We can first solve Equation (2.2) for }

number of arithmetic steps proportional to only N?.

To illustrate this, consider a 4 x 4 special case of Equation (2.2) and Equation (2.1):

hiyi = s (2.3)

lays + oy = s (2.4)

ls3191 + lsoyo + ls3ys = 83 (2.5)

layr + laoye + lasys + laays = 84 (2.6)
liawa = s (2.7)

Lizws + 33wz = y3 (2.8)

Lows + Lows + Lows = yo (2.9)

Dhws + yws + Bywe + 1wy = 1 (2.10)

From Equation (2.3) we immediately get

Triangularize: Use orthogonal transformations to compute a triangular matrix L from
X.

Back-substitute: Solve the set LY = S for the intermediate variables Y.

Back-substitute: Solve the set L'Ii" = Y for the desired weight vector 1.

This may be contrasted with a mathematically equivalent approach in which we compute
R=XX"

followed by a procedure called Cholesky factorization for determining L from R and then carry
out the two back-substitutions. The latter approach, while valid, is not numerically robust. In
the matrix R. the largest and smallest eigenvalues are usually determined, respectively, by jammer
power and thermal noise power. This ratio, if very large, determines the minimum word-length
needed in numerical operations to solve linear equations involving R. This word-length limitation
is fundamental and does not depend on the algorithm used to solve the linear equations. But if L
is determined directly from the raw data X, without ever computing R, the minimum word-length
requirement for solving linear equations involving L or L” is about half that needed with R.

Any nulling algorithm that depends on explicit computation of R from X is called a power
domain algorithm. By contrast, an algorithm that determines L by transforming the data set X is
called a voltage domain algorithm. Because it is most economical to design and construct hardware
with short word-lengths, voltage domain algorithms are preferred.

Now let us give some attention to the treatment of successive blocks. For this we must recognize
that both X and L will be different in different blocks. Let the raw data and the Cholesky matrix
in the kth block be X and Li. But how is X related to Xj_

If the statistics of interference were expected to remain constant with time, then we would
expect to estimate those statistics better and better by using more and more raw data in the
successive blocks. We would append the observations that became available during the kth plock,
Xnew, onto the matrix of all the observations available before, Xj_;:

Xy

(X1 | Xnew

so that

Ri = Ri_; + .N:S_Nm@:
and

LiLf = Ly LE) + Xpew XE

h»hw = t\» 1 w :mﬁ‘:ﬁ\,iw “ Vﬂ:m@i.

the tacked-on column X of the matrix [aL,y/X], we will use unitary transformations which each
zero out one additional element.

Two types of unitary transformations are used. One type makes the leading nonzero element
of the tacked-on vector, which is probably a complex number, become a real number. The unitary
matrix (Jg which accomplishes this is of the form

(100 ... 0 0]
010 ...0 0
001 ...0 0
Q¢ = ;
000 ...1 0
000 ... 0]

that is to say, Qg is an (N+1)x(N+1) identity matrix with the lower right diagonal element replaced
by e?. Postmultiplying [aLyq|X] by Qg leaves most of the matrix unchanged but multiplies the
last column (the tacked-on vector) by e/%. We must choose @ such that multiplying the leading
element of the tacked-on vector by /% makes the product real.

The other type of unitary transformation used is called a Givens transformation and is denoted
by Q¢. The form of the matrix Qg is derived from an (N +1) x (N +1) identity matrix by changing
four elements. The mth and (N +1)-st diagonal elements become cos ¢. The element in row (N +1)
and column m becomes sin ¢. The element in column (N + 1) and row m becomes — sin ¢. This is
illustrated here for m = 2:

1 0 0 0 0
0 coso O 0 —sino
0 0 1 0 0
Qo =
0 0 0 ... 1 0
| 0 sing 0 ... 0 coso]

When we postmultiply by Qg only the mth column and the tacked-on (N + 1)-th column are
affected. Suppose that the elements in the same row in those two columns are [and z. After the
transformation

I'! < lcosd+ zsing,and

' < xcosd— lsino.

If | and z are real, this may be viewed as a geometric rotation through the angle ¢ in the plane
defined by [and z axes.

By an alternation of postmultiplications by unitary matrices of these two types, the entire
tacked-on column can be zeroed out. This progression is illustrated in Figure 2-2. The symbolism

10

101394 UO-p33OR]

¢l
JudWS[3 INOJ 9} N0 0I9Z YOIYm SUOHRUWLIOFSURI] ATRIUN JAISSIIONS WS Z-7 9andiy

T e~y Il s I o e ey T~~~ ey T~~~ e Ll ey
o~ o~ e~ ey o~ ey — | o~ ey o~ e~y ~
—~ ~ e~ — | ~ o~ o~y ~ o~ ~ ™~ T~
— ki) 1 1 i ~ ot} 1
»i fll L » " norR o R LT] o X M
L]] — J J [J [1
o o IS o o o o °
4 4 4 4 U ¢ U ¢
T A 1 1 Al f 1 1
~ e~y ey e~ g T Ty T~ ey TN e~ e ey i
ey ™ T~ T ey i | e N T~ T T~ T T
o~~~y ™ ~ ™~ T o~) ™ ot~y ™ ™
o~] o~ bt ~ —y i Rt
o al & © =R 8 8 O BB R 8 8 R O B R R =
—] - J 1] — H i

cos¢ —sinoe
sino coso

Ini TN

This shows that the mechanization of the Givens transformation is almost exactly the same as
the mechanization of the Qg transformation. There is one difference. After dealing with the leaders,
the remainder of the Givens transformation is applied to two columns of complex numbers, whereas
the Qp transformation is applied to two columns of real numbers. However, we can consider the
Givens transformation applying separately to the real parts of its two affected columns and to the
imaginary parts of its two affected columns. In these terms a Givens transformation is identical
to two @y transformations. The unitary transformations needed to zero out a tacked-on column
appended to a (triangular) Cholesky matrix are all identical and can be implemented using identical
hardware. In the subsequent sections a design for such hardware in detail will be described.

It is instructive to estimate the total workload involved in using the algorithm we have described
to zero out a single 64-element vector. Each element in the Cholesky matrix is modified using three
rotations. To carry out each rotation using a conventional computer architecture would appear
to require two load instructions, four multiplications, an addition, a subtraction, and two stores,
about ten instructions per rotation.> Therefore 3(N + (N — 1)+ (N —2)+...+1) = wZAZ +1)=
6240 rotations, equivalent to about 62,000 instructions, are involved per new sample.

Several authors have proposed parallel computation to compute the update of a Cholesky
matrix. The best known architecture is a systolic array of computing elements arranged in a
triangular mesh [4]. For a given number of degrees of freedom, N, such a triangular array uses
N(N —1)/2 processors. This limits practical application of the triangular array architecture to
very small N.

5 The steps involved to rotate the leaders are different and more involved, but we are counting
them as if they were the same.

13

3. CORDIC REALIZATION OF GIVENS TRANSFORMATION

In this section. an algorithm is described for coordinate rotation that is well suited for digital
realization, known as CORDIC. The acronym stands for coordinate rotation digital computation.
The basic idea was first published in the 1950s by Volder [6].

Suppose a vector points from the origin to a point whose coordinates are (z,y), and that this
vector is to be rotated to a new point with coordinates (z'.y'), such that the angle between the
new and old points is £. We have .

!

' = (cosé)(r —ytan).and

/

y = (cos&)(y+xtanf).

This involves four multiplications. However, there are many special angles for which some of the
multiplications would simplify to shifts. We will concentrate on the special angles £, for which

tan, = £27",

Then the multiplications by tan ¢, become right-shifts by v bit positions. For fixed v, the two special
angles are of the same magnitude but opposite sign and therefore they have the same cosine.

The first step of the CORDIC algorithm is to realize any arbitrary angle £ by a sequence of
rotations either forward or backward by &,, v = 0,1,....0c. Let p, = +1 determine whether a
particular “minirotation” is forward or backward. Thus,

oo
£ = MU puéu.
v=0
and the rotation of (z, y) through the angle £ is accomplished by the sequence of steps in Figure 3-1.

The key step in development of the CORDIC approach is to recognize that the multiplications
by cos €, may all be collected together into a single constant

K = E cosé,

v=0

that is independent of the overall angle £ by which we rotate. Thus Figure 3-1 can be revised to
the form of Figure 3-2.

The CORDIC algorithm is composed of “stages”—most of the stages perform minirotations and
a “last” stage performs a gain correction. For any angle, all the minirotations are employed, but
each is employed in either a clockwise or counterclockwise direction. Although an infinite number
of minirotations are called for in an exact realization of the CORDIC algorithm, it is practical to
use a finite number of stages. in the same sense that it is practical to make a binary adder or

S

]

multiplier with a finite number of stages— the higher numbered stages contribute very little to the
accuracy of the angle specification. The correction stage is a multiplication by the fixed quantity
K, not a general-purpose multiplier. The exact value of A" depends on how many CORDIC stages are
used. As Table 3-1 shows, K (vpmq,) converges quite quickly. (In the MUSE application, the fixed
multiplication by K. designed into each CORDIC circuit, is combined with another multiplication
called the forgetting factor.)

TABLE 3-1.
Correction Constant Required when the Last Stage Rotates by arctan 2~ Vme=
Vmar K Vinaxr K
0 0.707106781 8 0.607254479
1 0.632455532 9 0.607253321
2 0.613571991 10 0.607253031
3 0.608833912 11 0.607252959
4 0.607648256 12 0.607252941
5 0.607351770 13 0.607252936
6 0.607277644 14 0.607252935
7 0.607259112 15 0.607252935

A corDIC method therefore achieves rotation without using any of the trigonometric functions
and without explicit multiplications. If the angle by which we wish to rotate the pair (z,y) is known
in advance, we can determine the set of controls

that are each represented by a single bit. This may be thought of as representing the angle £; using
digits p; in an unconventional number system, a number system different from binary, decimal, or
any of the radix systems that are commonly used. Each p; can be stored in a flip-flop in the stage
whose direction of rotation it is to control.

However, in the Givens transformation application the angle of rotation is not known in ad-
vance. A pair (z,y) is given and we must rotate that pair through the angle such that the resulting
rotated pair takes the form (z’,0). This operation is called vectoring. Then we must rotate some
number of other pairs through the same angle. There is no need to know what the angle is, so long
as we are able to rotate by that angle. Therefore what we really need for vectoring is an algorithm
to determine the CORDIC controls p;. A major advantage of the CORDIC algorithm is that the same
circuit that is used for rotating may be used for vectoring.

Consider just the first CORDIC stage, for which the special angle is either 45° or —45°. Since
the purpose is to rotate the input (z,y) toward the x axis, if y is above the axis then we should
rotate “down,” and if y is below the axis then we should rotate “up.” Therefore

17

po = sgn(z)sgn(y).

Once pg is determined we compute the effect of the first stage on x and y and pass (z, y) as modified
to the second stage. Here again the rule is to rotate down if y is above the axis and up if y is below

the axis.
p1 = sgn(z)sgn(y).

In this way, the determination of the controls is quite simple.
pi = sgn(z)sgn(y), 1 =0,..., Vmas.

These controls, once determined, are saved in the flip-flops of the specialized stages and are used to
control those stages for the succeeding (x,y) pairs that are to be rotated through the same angle.

In Figure 3-3 the concept of a CORDIC circuit made up of independent stages is shown.! The
inputs (z,y) are modified by minirotations as they proceed from stage to stage. This circuit has
the virtue of natural pipelining. If registers are placed between the stages where there are dashed
lines in Figure 3-3, then a new rotation problem, involving a new pair (z,y), can be started by

144248-2

Y

X =l

Y

L I T T T T T .
- e wm mn o o e o owe o fe e o o .
T T R
- o e e o el o we e w fm e e - o

P3

T
) e

Figure 3-3. Pipelined CORDIC circuit.

0 1 2]

the circuit as soon as the preceding pair has been latched at the output of the first stage; then yet
another rotation may be started when the first two pairs have been latched at the output of the
second and first stages, respectively, etc. Note that rotation may follow vectoring in this pipelined

! In Figure 3-3 the controls p; are shown as if they depended only on the sgn(y). The simplified
figure is meant only to illustrate the pipelining aspect of CORDIC circuits. In fact the controls

depend on sgn(y)sgn(zx).

18

fashion. Only an addition and a subtraction need to be performed in each stage. These operations
can be carried out very rapidly in digital logic. Therefore the rate at which a CORDIC circuit can
begin new rotation problems is quite high. By contrast the time required to complete any given
rotation is proportional to the number of CORDIC stages provided.

19

vectors are presented sequentially, one element per microcycle, just as for a 6-corDpIC. Refer to
Figure 4-1. The input vectors for 0-CORDICs have complex elements made up partly from the
output of a §-CORDIC and partly from one column of the Cholesky matrix. The master ¢-CORDIC
gets the real part of its input vector from the real part of the Cholesky matrix column and gets
its imaginary part from the real part of the #-CORDIC output. The slave ¢-CORDIC gets the real
part of most of its input vector from the imaginary part of the Cholesky matrix column and gets
the corresponding imaginary parts from the imaginary part of the §-CORDIC output. However, the
leader of the vector that is input to a slave ¢-CORDIC is a special case, which is discussed below.
The outputs of the two types of ¢-CORDICs are then reassembled. The real parts of the ¢-CORDIC
outputs become the real and imaginary parts, respectively, of the updated Cholesky matrix column.
The imaginary parts of the ¢-CORDIC outputs become the real and imaginary parts, respectively,
of the updated tacked-on vector. A more complete explanation follows.

Note that CORDIC circuits are used for two quite different meanings of “rotation,” one being
the phase modification of a complex number and the other being the coordinate rotation of a two-
element vector. In the latter case, although the two coordinates may be complex numbers, the
angle through which they are rotated is real, and the same real rotation angle is used on the real
and imaginary components, respectively.

First, consider the ith transformation Qg. Its input is the tacked-on vector with components
[z;,2:41, ..., zn], all complex numbers. These are fed into a §-CORDIC one pair at a time, beginning
with the pair (Re(z;), /m(z;)). The first pair is marked as a “leader” with a special indicator that
causes the CORDIC circuit to determine and set the p; controls as it passes through the successive
rotation stages (vectoring). Thus the modified z; that emerges from the #-CORDIC is rotated in
phase so that it is real—its imaginary component is zeroed. The “followers” z;.1,...,znN are
rotated by the same phase as the leader, but they generally emerge from the §-CORDIC as complex
numbers.

It is helpful to think of the tacked-on vector as being pumped through the #-CORDIC one
element at a time, and to think of the CORDIC as a pipelike organ. As many elements as the
CORDIC has stages will be inside the pipe at any time.

In the 7th transformation Qg4 the data being pumped through the transformation are two
columns, [li ;, lis14,---,Ins] and [z;, 241, .., 2N]. These are composed of complex numbers except
that the pair (l;;,z;) is real. Things are arranged so that l;; and z; are available simultaneously.
One CORDIC, the master ¢-CORDIC,! gets its two inputs from the real parts of the two input streams.
The slave ¢-CORDIC takes its two inputs (with one exception) from the imaginary parts of the two
input streams. The pair (l;;,x;) is marked as a leader so that as it passes through the master
@¢-CORDIC it determines the angle controls p; for that CORDIC, which are to be used to rotate all
the follower pairs (Re(lx;), Re(zx)) which pass through the master ¢-CORDIC. The same angle
controls are to be used in the slave ¢-CORDIC to rotate the pairs (Im(ly;), Im(zx)). The slave
@-CORDIC is not needed for (Im(l;;), Im(z;)) because this pair is (0,0). Therefore it is “tricked”
into setting its angle controls identical to those of the master ¢-CORDIC by giving it the leader

! The terms master and slave are left over from an earlier usage and are not meaningful.

22

pair (Re(l;;). Re(x;)) in place of (Im(l;;). Im(z;)). The outputs of the ¢-CORDICs are an updated
column of the Cholesky matrix and an updated tacked-on vector with its ith element zeroed.

In this way, the use of three CORDIC circuits accomplishes the pair of transformations needed
to zero out one element in the tacked-on vector. This three-CORDIC configuration is called a
supercell. In Figure 4-1 we illustrate how the #-CORDIC and the master and slave ¢-CORDICs are
interconnected and how the pipelining of each individual CORDIC circuit extends naturally to the

pipelining of the supercell.

- 144248-3
INPUT TACKED-ON
COLUMN
Re Im
MEMORY 6-CORDIC
: . Re Im
< Tt a _
Re X Im X
Re L MASTER ¢-CORDIC imL SLAVE ¢-CORDIC
Re Im
outputr @
TACKED-ON COLUMN
Figure 4-1. A CORDIC supercell.
Figure 4-1 shows how the column {l; ;, li+1,4....,In ;] can be stored within the supercell in local

memory. On the other hand [z,.,..

...xx] must be passed to another supercell where it is needed

by the (i + 1)st Qg transformation and subsequent @, transformation. Since the leader of the

23

5

tacked-on vector is zeroed out by passing through a supercell. the element immediately following
it in the sequence becomes the new leader element.

4.2 Simple Systolic Array

Now that there is a configuration for a supercell that can update one column of a Cholesky
matrix, a complete systolic array using /N such supercells can be configured. Figure 4-2 shows such
a systolic array, except that the local memory in each supercell. which holds the column that the
supercell must update, is shown separately. In this array the data passed from supercell to supercell
are components of the tacked-on vector. one complex word at a time. Thus, at the input to the
first supercell the data seen, in order of arrival, are:

PR TR T O R o SN 5 D DR i3 I F ST 5 S

Each block consists of one vector sample of observed interference X. Note that as soon as one
block’s vector has been pumped into the first supercell, it is ready to receive another block’s vector.
The time interval between the first elements of two successive vectors will be called a macrocycle.

The output of the first supercell is a modified tacked-on vector. Its other product, the updated
first column of the Cholesky matrix, is retained within the supercell, to be used as original data for
the next update. The modified tacked-on vector has one fewer component than the original. Thus
the output of the first supercell (input to the second supercell) takes the form

T tﬁ Io, I3.... ,&?.\TH?T _v,Hm, .

where the b’s are blanks, e.g., time intervals when no data is present. The second supercell’s output
(the third supercell’s input) has two blanks per block:

Nf @.‘ I3y.. .y, IN-1, TN ;mf 0, I3, -

.

Strictly speaking, the blanks represent zero-valued samples. But these are not values that just
happen to be zero— they are inevitably zero. Thus they need not be explicitly sent from supercell to
supercell, nor involved in computation. Therefore the first supercell is busy all the time, the second
supercell is idle for one microcycle out of every N, the third supercell is idle for two microcycles
out of every N, and the last supercell is idle for all but one microcycle out of every N.

4.3 Latency

Since a CORDIC circuit is pipelined, there will be a circuit latency. This means that there is
a delay between presenting an element at the input and getting the corresponding result at the
output. Latency is essentially the amount of time the data stays in the “pipe.” A supercell has the
latency of two CORDIC circuits. We will use 7 to represent the latency of a supercell in microcycles.

24

INPUT 1442684

N WORDS
PERSAMPLE Y ¥ l_
m%m,_m.m _ } MEMORY FOR COLUMN 1
w%mu_m.m L | MEMORY FOR COLUMN 2
w%mv%_.m _ | MEMORY FOR COLUMN 3
m%%.m.m L } MEMORY FOR COLUMN 4
T il }
[]
[]
®
K
m%%..m_.m MEMORY FOR COLUMN N

— 4

Figure 4-2. Systolic array to update a Cholesky matrix.

Thus as a simple example. if 7 = 3 and N = 5 then there would be the following time relationship
among the five (numbered 0 to 4) supercells:

-0: 7 790 x3 T4 T

0-1: b z0 13 T4 T3

1-2: b b T3 T4 Iy

2-3: b b b xy as

3-4: b bbb uxs

This is the timing relationship for successive modifications of one tacked-on vector as it is
passed from supercell to supercell. However, because each supercell begins to work on another
update as soon as it completes the previous update, a much busier timing relationship would
actually be observed:

5. AN EFFICIENT SYSTOLIC ARRAY WITH LATENCY CONTROLLED
INTERLEAVING

In the previous section a systolic array for updating a Cholesky matrix was introduced. In this
section a major improvement that increases the efficiency of the systolic array is explained.

To begin, each supercell was assigned the responsibility for updating not one but two columns
of the Cholesky matrix. The lengths of the two assigned columns will always add up to N + 1.1
This is done as in Table 5-1.

TABLE 5-1.
Pairing of Columns in the Same Supercell
Supercell Column No. Length Column No. Length
0 1 N N 1
1 2 N-1 N-1 2
2 3 N-2 N-2 3
k k-+1 N-k N-k k+1
N/2-1 N/2 N/2+1 N/2+1 N/2

A modification of the simple svstolic array to use the pairing leads us to Figure 5-1. By this
pairing we obviously equalize the workload of the supercells, since each supercell is required to
deal with two leaders and N — 1 followers for every new vector sample of interference that comes
along. Only half as many supercells are needed as before. Furthermore, the memory, which is used
in ¢-CORDICs to store the columns of the Cholesky matrix to be updated in that supercell, is the
same size in all the supercells, N + 1 words per ¢-CORDIC.

This modification allows us to retain all the advantages of a systolic array. There are two
aspects of this statement that need clarification. First, because the tacked-on vector in the originally
proposed systolic array is passed from supercell k—1 to supercell k, and since in the modified systolic
array supercell k has the responsibilities of supercell N — 1 — k, each supercell must pass data both
forward and backward. For example. supercell 2 must pass its output to supercell 3 but, later,
when it is serving the role of supercell N — 3 it must pass its output to supercell N — 2 which is
really supercell 1. Yet these communications are still only local. There is still no need for a global
bus.

1 We are assuming that N is even. A similar line of development, not taken in this report, can
be worked out if N is odd. We would use the first supercell for the longest column and pair the
remaining columns so that their lengths added up to N.

27

A

OUTPUT
(ALL BLANKS)

.

144248-5

{
e X Xy LB Xy, Xy,

COLUMN N
SUPER _ _ -
CELL
» COLUMN 1
COLUMNN - 1
SUPER _ _ —
CELL
COLUMN 2
1L
COLUMNN-2
SUPER _ _ i
CELL
} COLUMN3
l
COLUMNN-3
SUPER _ _ —
CELL
» COLUMN 4
J
) °
. .
° °
h N
COLUMN 5 +1
SUPER _ _ i
CELL v =
. _ COLUMN 3
Figure 5-1. Global architecture of folded systolic array.

28

The second consideration is more difficult. In a systolic array we would like the data to get to
where it is needed exactly when it is needed. It would not be suitable if supercell k were passed
tacked-on vectors from supercell k + 1 and also from supercell k¥ — 1 during the same microcycles.
To explore this issue in more detail we need to take account of the supercell latency 7 as well as
the workload of each supercell. Further, we must consider more than one update cycle at a time.
For example, supercell 0 would devote N microcycles to the update of column 1 for the current
tacked-on vector, then devote one microcycle to the update of column N for a much older input. In
supercell 0, suppose that the current tacked-on vector is input during microcycles 0,1,..., N -1
When supercell 0 serves as supercell N — 1, it works on a tacked-on vector of length 1. Therefore
we must leave at least one blank microcvcle per cycle. It would be best if the one-element vector
arrived exactly as the supercell becomes available during microcycle N. Then the whole timing
pattern can repeat periodically beginning in microcycle N + 1 with a new N-element tacked-on
vector during microcycles N + 1, N + 2...., 2N followed by a blank in microcycle 2N + 1 during
which, as supercell N — 1, a new one-element tacked-on vector is input.

Letting the latency be an unknown quantity 7, we can deduce when inputs arrive at supercell 1,
then at supercell 2, etc., until a pattern is obvious (see Table 5-2). The pattern allows us to write
the list for any generic supercell, Py, and for the generic supercell Py_j_j that is its alter ego. The
microcycles when inputs are presented are congruent mod N + 1 to the lists in Table 5-2.

TABLE 5-2.
Microcycles when Each Supercell Input Is Busy

Processor When Inputs Are Presented Inputs/cycle

ﬁo 0,...,N-1 N

Py 7+1,...,7+N-1 N-1

Ps 2(r+1),...,27+N-1 N-2

Py k(r+1),... ,kT+N-1 N-k
PnN_1-k (N-1-k)(7+1),... ,(N-1-k)7+N-1 k+1

The keyv point is that 7 must be chosen so that all these inputs are presented to supercells
during all these microcycles without any data collisions. It is completely adequate to derive a
condition on 7 from the generic supercell that serves as P, and Py_1_¢. The only legitimate time
for supercell Py to change its role to supercell Py_;_j is just after microcycle k7 + N — 1, when
the latter must accept the arrival of data from the other direction, beginning in a microcycle whose
number is congruent to (N — 1 — k)(7 + 1) mod N + 1.

(kr+N-1)+1=(N~-1-k)(r+1)mod (N +1)

kr—1=(-2-k)(7+1)mod (N +1)

29

k(21 +1)= —(27 + 1) mod (N + 1)
(k+1)(27 +1) = 0mod (N + 1)
At this point if the same 7 is to work for all k then we must have

27 +1=0mod (N +1).

The above equation is a congruence. We can write it as an equality with an unknown multiplier
m

2r+1=m(N +1).

The smallest allowable? latency would be when m = 1, namely

The idea of choosing a latency that allows all the various partially zeroed tacked-on vectors
of different lengths to interleave with one another without collisions is called latency-controlled
interleaving. It allows us to “fold” the linear systolic array, which was only about 50 percent
efficient, into a half-size linear array that is 100 percent efficient, without paying a penalty in
complication of control.

Earlier, when the inputs to ¢-CORDICs was discussed. we arranged that [;, which comes from
a local memory, and z;, which comes from a #-corDIC, should arrive at the ¢-CORDIC input during
the same microcycle. This is also accomplished by latency-controlled interleaving, but of a much
simpler sort. The delay from one update cycle to the next is N + 1 microcycles. Therefore, as I ;
is updated, the updated /; ; must be delayed, by a combination of the latency of the ¢-CORDIC and
some extra delay, so that it appears at the input again N + 1 microcycles later. The latency of a
¢-CORDIC is approximately . The extra delay needed can be provided by a small memory, which
has about N + 1 — 7 words.

In Figures 5-1 and 5-2 the folded systolic array is shown. Figure 5-1 is the global architecture
and Figure 5-2 shows the communication for a typical supercell and its neighbors. The necessary
control of this systolic array has two aspects. First, the data passed from CORDIC cell to CORDIC
cell must be marked with an indicator of whether it is a leader or a follower. Second, since a
6-CoRrDIC cell can take its input from two other supercells, forward or backward in the chain, some
control must tell it which to choose.

A simple rule accomplishes both controls. At the input to the first supercell (supercell 0), an

input bit called direction is provided. When direction = true the leading supercell takes its input
from the given N-element tacked-on vector. When direction changes to false the leading supercell

2 Because N is even, a parity argument will show that m must also be odd.

30

[
P

Figure 5-2. Local communication within folded systolic array.

takes its next input from supercell 1 (acting as supercell N — 2). The change in direction from false
to true or from true to false serves as a mark of an element that is a leader, causing the CORDIC to
set its controls as that element passes through the stages.

The direction bit is passed systolicly along with the tacked-on vector through both types of
CORDIC cells and emerges from the ¢-CORDICs to be used in the next supercell.. However, the
leading edge must be delayed by one additional microcycle relative to the tacked-on vector so that
the change in direction is attached to the first element not zeroed out. The direction bit travels only
forward along the chain. Direction bits output during processing of data being passed backward
would be redundant and are ignored. In this way, the control of the folded array is actually no more
complex than the control of the original systolic array, and each supercell generates the control for
the supercells that follow it in the chain.

6. SIMULATION TO SELECT PARAMETERS

We want MUSE to be able to demonstrate adaptive nulling with S/N improvement of at least
50 dB. Now there are many factors in a system that control the achievable improvement in S/N
due to adaptive nulling. These include the number and distribution of jammers, their strength in
comparison to thermal noise in the svstem, the antenna element gain patterns, mismatch in the front
ends and in all other circuitry prior to digitization, the adequacy of the statistical representation
of interference (principally. how many samples used to characterize it) and, finally, the accuracy of
the digital computation. MUSE’s design should not rely on special knowledge of the environment,
the antenna elements, or front ends. The point of view is taken that MUSE should be capable of
adapting to artificial random inputs generated with only the constraint that 50 dB of nulling is
possible. Even here. however, there is a caveat. Since it is relatively easy to provide artificial data
whose dynamic range will overwhelm any fixed design. we must require that the artificial data sets
include some bound on the largest jammer to thermal noise ratio, and indeed, this bound should
be only a little bit more than the desired 50 dB §/N improvement sought.

With this goal, we have been able to select MUSE parameters by extensive numerical simu-
lation. Each hardware configuration under consideration was simulated exactly at the “bit-level”
with the chosen number of stages. word-length, etc. Simulated data sets were contrived with any
selected number of “jammers.” such that exactly 50 dB of S/N improvement (or any other desired
amount) was theoretically possible for that data set. The “condition number” of the contrived
data was also controlled so as to be realistic. Except for these two constraints, the data sets were
random and several data sets with the same condition number and theoretical S/N improvement
potential were tried for each experiment. In appendix A, the mathematical method by which we
can produce data from a random scenario with these two constraints is explained. The Cholesky
matrix determined by MUSE for each data set was used to determine weights and the weights were
used to determine the actual S/N improvement. Therefore, the loss in performance due to the finite
word-length, finite number of CORDIC stages, rounding and truncation, etc. was determined.

Based on these simulations, four finite word-length parameters could be determined: the word-
length of internal CORDIC registers, the word-length for the tacked-on vector, the word-length for
the Cholesky matrix, and the number of CORDIC stages. The “forgetting factor” was also studied
and is described elsewhere.

The heart of the simulation is a subroutine that simulates a CORDIC process with integer
arithmetic. Because a typical CORDIC stage requires scaling data by 27% and adding it to unscaled
data, the word-length required for a precise execution of the equations in Figure 3-2 would increase
the number of bits to the right of the binary point by 7 bits in the ith stage. Thus we need rounded
arithmetic in almost every stage. However, such rounding introduces computational noise in every
stage, and the total noise could be excessive. Guard bits introduced at the low end of each word
reduce the rounding noise. Experiments showed that two guard bits reduced the rounding noise
adequately.

o
w

It was also necessary to consider overflow. Of course, overflow in a CORDIC might be inevitable.
If z and y are both near their maximum allowed values at input and are rotated by 45°, then a
component of the result can exceed the maximum by a factor of almost v/2. This kind of overflow
must be prevented by appropriate scaling of the inputs, a consideration common to all fixed-point
signal processing projects. However, a second kind of overflow is also a concern—overflow within
an interior CORDIC stage. This was “prevented” in connection with realizing the combination of the
CORDIC gain compensation and forgetting factor. The required fixed multiplication (1242/2048) is
achieved by using three shift-and-add circuits, e.g.,
1242 (27 + 23 +21)(2%8 4+ 1)
2048 21 .

The multiplication is split between a factor of 138/256 at the input to the CORDIC (the guard bits
are created at this point) and 9/8 at the output of the CORDIC (the guard bits are dropped at this
point). The reason for splitting the factor in this way is to ensure that overflows can only occur in
the CORDIC circuit’s interior in cases when overflows would be inevitable due to simply storing the
result of an accurate rotation in the available word-length.

Because the simulation of the CORDIC takes exact account of the finite word-length arithmetic
process, the results it produces are bit-by-bit identical to the results expected from actual hardware.

The simulated CORDIC subroutine is called with each pair of inputs, and with a flag telling
it whether this is a leader pair for which the controls are to be set or a follower pair for which
previous controls are to be used. The subroutine is called three times within another subroutine
that simulates a supercell for a pair of inputs. An L-Update subroutine calls the supercell subroutine
64+63+62+...+2+1 = 2080 times for each tacked-on vector. The L-Update subroutine is called
once for each vector sample in the data set. This simulation ignores the latency and other timing
issues, since they have no bearing on the relations between parameter choices and performance.

The contrived data sets comprised exactly NV = 64 vector samples for which the ideal Cholesky
matrix was predetermined. Ideal weights were computed using floating point arithmetic for this
ideal Cholesky matrix to confirm that the predetermined S/N improvement was correct. Then these
64-sample data sets were repeated as MUSE inputs several times in succession, and snapshots of
L were taken after every block of 64 samples. The computed Cholesky matrices were then used to
compute MUSE weights using accurate arithmetic. Any loss in S/N improvement when the MUSE
weights are used in place of the ideal weights could therefore be attributed to the computational
error in computing L with finite word-length arithmetic.

Another method of computing weights will be described in section 8 in which the linear equa-
tions for the desired weights are solved, after L is already computed, using the same finite word-
length CORDIC arithmetic. Therefore nulling based on weights computed that way should generally
show an additional loss in S/N improvement. This was also studied.

In Figure 6-1, the abscissa gives the condition number of a possible data set and the ordinate
gives the S/N improvement possible for that data set. The solid curve gives the upper bound of
the set of possible scenarios. With a given condition number, no data set is possible for which a
sidelobe canceller can give an S/N improvement that lies above this curve. Some scenarios marked

34

as crosses on the plot are illustrated. The most interesting data sets are points just a little below
the curve, representing strong jamming that can be deeply nulled.

144248-6
f I R f]
O LI .
& 50 e 0
2 L ; ., 8
> R A& [} a - [) -
= I)\ s ° o °
W /v/\/\ . [© o
3 SEIRIEERIRT o
[y -
z o °
h
45 \
/
| _ | | | |
400 500 600 700 800 800 1000
CONDITION NUMBER

Figure 6-1. Scenarios and performance for ideal nulling and for simulated hardware

parameter choices.

Individual experiments with fixed word-length parameters produce reduced S/N improvements.
Those weights obtained by accurately solving for weights using an inaccurately computed Cholesky
matrix are marked as filled circles on the plot. The S/N improvements for the same inaccurately
computed Cholesky matrix when the weights are computed using the technique of section 8 are
indicated by open circles. When several scenarios with the same theoretical performance were tried,
there is one cross and a scattering of filled and open circles.

The data in Figure 6-1 are for the final parameter choices.

Suppose we are experimenting with the number of CORDIC stages. By making generous choices
for the other finite word-length parameters, we can get some idea of how parsimonious we could be

35

with the number of CORDIC stages. The other finite word-length choices were guessed at similarly.
Then, by varying word-lengths, guard bits, and stages, one bit or stage at a time, we could zero in
on the best trade-off of hardware cost and performance.

Several observations were clear from studying many cases in this way. First, the loss in S/N
improvement due to parsimonious parameter choices increases with the condition number of the
data. For a data set with a condition number around 300, the loss is negligible. For a data set with
condition number about 1000, the loss is about 2 dB. Therefore, if we want a system to be capable
of 50 dB S/N improvement, it would be unwise to try to make parameter choices based on data
sets for which the condition number is higher than 850. Second, when one parameter is chosen
too parsimoniously, curves that plot performance as a function of another parameter can be too
irregular to be useful, often seeming to suggest that saving a bit or a stage is helpful rather than
harmful. Third, the loss in S/N improvement does not seem to depend on the number of jammers
as long as there are fewer jammers than degrees of freedom. All the experiments illustrated in
Figure 6-1 were run using 35 CW jammers.

After many experiments, final parameter choices were made. The number of CORDIC stages,
exclusive of the three stages used for the combination of CORDIC correction gain and forgetting
factor, was selected to be 13, e.g., Vimqr = 12. The word-length of internal registers of the CORDIC
cell was chosen to be 24 bits. Of these 24 bits the two least significant bits are guard-bits and
are not passed beyond the CORDIC. The tacked-on vector data passed between CORDIC cells uses
a 22-bit word-length. The stored [; ; are also 22-bit words. Note that the inputs to the wafer,
obtained from the antenna elements, although presented as 22-bit words, must not be allowed to
use the full 22-bit dynamic range since the Cholesky matrix, generated from many such tacked-on
vectors, contains the energy of all of them and so is much larger than any single one.

It was decided earlier that MUSE should be capable of updating its Cholesky matrix about
45,000 times per second. Each vector needs 67 microcycles! to be fed into MUSE, so the time for
a microcycle must be about 1/3 microsecond. The system clock rate is four times as fast, about

12 MHz.

Statistical accuracy of the weights to within about 1 dB of optimum requires about 320 up-
dates [3]. This means that the weights can be updated as often as 140 times per second. However,
MUSE is physically capable of updating its weights much more frequently or less frequently because
a “snapshot cycle” is designated by a special external signal.

1 MUSE accepts a new 64-element vector every 67 microcycles, rather than every 65. This will
be explained in section 8.

36

7. APPLICABILITY OF RESTRUCTURABLE VLSI

The systolic array described in the preceding sections has 32 supercells, each requiring three
CORDIC cells. A CORDIC cell can be designed as an integrated circuit. Such a circuit requires some
tens of thousands of transistors. classifving it as VLSI. Because the three types of CORDIC cells are
so similar to one another, it suffices to design only one type of CORDIC cell, capable of operating in
three different modes. The MUSE system can be realized efficiently using an advanced technology
called Restructurable Very Large Scale Integration (RVLSI). Lincoln Laboratory has already used
this technology to realize six different svstems, so the technology is reasonably mature. The RVLSI
technology is briefly described.

7.1 Restructurable Very Large Scale Integration

Restructurable VLSI comprises a design methodology, a laser-based interconnect modification
technology, and a set of CAD tools for building large area integrated circuits [8,9]. Wafers are
fabricated with redundant circuits and interconnect, which are tested after fabrication. A laser
is then used both to form and to break connections to the operable circuits, and to build the
desired system. The laser can also customize circuitry by, for instance, setting constant coefficients
in circuits used to implement a filter function. The size of the basic replaceable unit, the cell, is
determined by partitioning considerations and fabrication yield; typically a cell comprises thousands
of transistors. Experience has shown that building a wafer with about twice as many cells as
ultimately needed strikes a good balance between interconnect overhead and cell yield.

Several laser restructuring technologies have been developed [10]; the technique to be used in
the MUSE application, which uses the laser to form a connection between two adjacent diffusions,
is completely compatible with standard IC processing. The laser diffused link is used for both signal
and power connections. Connections are broken by using the laser to vaporize a metallization path.
The connections and the metal cuts are made with high yield and appear to be very reliable.

A set of software tools has been developed for the design tasks that are unique to wafer scale
design [11]. Floorplanner is used to plan the tiling of a wafer with cells and interconnect and IRT
performs a unique assignment and routing based on test results for each wafer. IRT also adds
connections for testing of the wafer during restructuring and allows removal and replacement of
circuits that are found to be defective during this process.

Six RVLSI systems have been built on three different wafer designs [8] with the largest one
having 405,000 functional transistors. One Integrator wafer scale system has been operating in a
bench tester for 4 1/2 years without failure. The MUSE system and another now being built [12]
are by far the largest and most logically complex wafer scale circuits.

37

7.2 Adapting MUSE for RVLSI

Several design choices were made in order to make the MUSE design even more compatible
with the RVLSI technology.

First, because of the significant cost of intercell connections, the microcycle was divided into
four steps so that data could be moved into and out of a CORDIC cell in four small pieces. Consider
a 6 cell that must read two 22-bit words from either of two sources (the supercell ahead of it and
the supercell behind it) while outputting two 22-bit words to the ¢ cells of its supercell. This
would have required 132 connections to at least as many metallization lines, without even counting
clocks, control, power and ground, and jumpers. The four-step microcycle allows the same data to
be moved with 33 connections and 33 metallization lines.

Second, the two adder /subtractors in each CORDIC stage were replaced by one adder /subtractor
time-shared between two tasks. It first computes its “y” output
y —y+2px,
but preserves the old y for the next computation

T e—T-— mw&@.

The adder/subtractor is the largest part of the stage, much larger than the control or the pipeline
latches. Therefore, this change reduces the size of the stage. In exchange, it takes twice as long to
perform a minirotation since this is essentially the time to perform the addition and the subtraction.
Since a CORDIC cell, even after this change, is relatively large, and since an adder can be designed
adequately fast, this modification was judged worthwhile.

Third, it was decided to provide each CORDIC cell with adequate memory to store the required
real or imaginary part of the two columns of the Cholesky factor, even though the §-CORDIC cells
have no need for this memory. The memory uses only a minor portion of the silicon area of each
cell, and the cost of this silicon area must be balanced against the competing cost of providing
connections between the ¢-cells and a second type of cell, “memory,” or alternatively, against the
cost of making two types of CORDIC cells, some with memory and some without.

The fourth change is very much more complex and is dealt with in section 8. Briefly, after
enough samples have been used to update a Cholesky matrix and the time has come to use that
matrix to solve the linear equations for the nulling weights, it would have been necessary to provide
data paths to pass the N(N +1)/2 matrix elements off the wafer to where they could be used next.
Instead, we found a way to use the CORDIC cells to begin the process of solving the linear equations.
This method produces 2N intermediate results, which are the only quantities that must be sent
off the wafer, and they are moved along on the paths already provided for moving the tacked-on

vector.

Finally, we will make the CORDIC cells in two mirror image versions and run the discretionary
metallization paths between them. The ability to use CORDIC cells on either side of a “bundle” of

38

(i~ Kp.)? _ Lk=ipm)?

mva ‘GM},.UN.AHINB,V e 2ipmil=pm)

DijKik/i & == : . (7.1)
R V2TEpe(l = pe) \/27ipm(1 = p)
This approximation is valid when Kp.(1 — p.) > 1 and kp,,(1 — Pm) > 1.
Then we may conveniently compute P, as

K mvnwv _ :,;»M%wwuwvm V i mlq 3 Aﬁklmwgsﬁvw ;

2K GAHF - Ppril—pm
Po=3" = be—bl M = . (7.2)

i=06 MS! Nvmmu— - Num,v k=64 vV \\-:,ﬁﬂ:A“— - N»gv

A computer program to evaluate this double sum may be further optimized by limiting the
summation indices. For the outer sum the low index is the greater of 96 and Kp, — 5 Kp.(1-p.),
and the upper index is the lesser of K" and Kp. +5/Kp.(1 — p). Similarly, for the inner sum, the
low index is the greater of 64 and ip,,, — 9/ ipm(1 — pm) while the upper index is the lesser of i and
Pm + 5/ 1pm (1 i.ﬁiv

In Figure 7-1 the solid family of curves give wafer vield, for a wafer design using 130 cells,
versus CORDIC cell yield, with different assumed values of memory yield. The curves, from right to
left, are for memory yields of 50, 60, 70, 80 and 90 percent (the curves for 80 and 90 percent are
too nearly identical to be resolved).

Of course, only a limited number of wafers will be made, probably ten. It is not difficult to
compute Py, the probability that the best of the ten wafers will have enough useful cells. The
probability that a given wafer is inadequate is 1 — P,, and the probability that all ten are inadequate
is (1 — P,)'°. Hence the probability that at least one out of the ten wafers can be used for a wafer
scale MUSE is

P =1~ (1= P10

The dotted curves in Figure 7-1 give the probability of at least one usable wafer versus CORDIC
cell yield for the same choices of memory yield (curves for 70, 80, and 90 percent are almost
indistinguishable).

An examination of the dotted curves in Figure 7-1 shows that memory failures of up to 30 per-
cent make almost no difference in the expected wafer yield or probability of success. Based on a
CORDIC yield of about 70 percent, about what we have with test cells, we would expect about an
85 percent chance of project success in a run of ten wafers. However, this probability drops sharply
with decreasing CORDIC yield.

If we have insufficient CORDIC cell yield to make a complete MUSE system on a single wafer,
we can still make a wafer scale system by linking together two wafers. Only a few connections
need to be made between the two wafers because a relatively small number of connections run
from supercell to supercell. Roughly speaking, two wafers would have twice as many CORDIC cells
to start with and therefore should allow system success with about half the vield that would be
required with a single wafer. In reality the situation is slightly more favorable since the lower

40

L e

" N A R R B B P \ \
:]
5 |
@ s
(@] B
00 I SR S I S \ \ _ _

01 02 03 04 05 06 07 08 098 10
CORDIC CELL YIELD

Figure 7-1. Expected wafer yield versus CORDIC cell and memory yield.

1442488
10 ________~
>
[
=
m
g 05
m
: \
joe
o
00 L
0.1 02 03 04 05 06 07 08 09 10

CORDIC CELL YIELD

Figure 7-2. Expected system vield versus CORDIC cell and memory yield, using best
two of ten wafers.

41

Sy

CORDIC yield implies a greater variation from wafer to wafer and since we would use the best two
wafers. The probability of forming a NMUSE system from the best two wafers out of ten is given by:

K K
mum:. = M MU MU M %t EH Mo, 3@....,2©,35vv

ny=0ns=0n3y=0 nyo=0
K . K B
P (1= po)t T (L= pe)i
ni no
‘N\.ww IA:H.EINC.;SHCV t
pet(1—p)fme % Pm(1 = pm)* ™ (7.3)
10 m=64 m
where
\&A3~13M4 ng,..., Ny, zwovv - J\wﬂw‘wurmﬁf + :.Nv
and
1 m>96

S(m) =

0 otherwise

In Figure 7-2 we plot the probability of finding 96 working corpIC cells with 64 working
memories on the best two out of ten wafers. The curves, from right to left, are for memory yields of
50, 60, 70, 80, and 90 percent (curves for 80 and 90 percent are indistinguishable).. From Figure 7-2,
we would predict that with memory yield of only 70 percent and CoRrDIC yield of only 34 percent
we have an 85 percent chance of forming a MUSE system with two wafers out of ten.

42

8. USING CORDIC CELLS TO SOLVE LINEAR EQUATIONS FOR
WEIGHTS

8.1 Mathematical Preliminaries

Consider the general N x N set of linear equations

AX =18

where A and B are given and X is to be determined. To solve the linear equations, we will introduce
a seemingly unrelated second problem. First, construct an N x (N + 1) matrix by appending B
onto the right edge of A.

[A] Bl

Next, postmultiply it by an (N + 1) x (N + 1) unitary matrix @ that causes the last column of this
matrix to become zeroes.

[A1BlQ=Alq].

Third, partition @ as

|
Quu | €@

Q I
From this partition we can obtain the equation
AQ +¢B =0

leading to

lmﬁ
q

Al)=B.

This shows that the solution to the original problem, solving for X, is hidden in the elements

making up the last column of the unitary matrix) in the second problem. If we can zero out a
column B tacked on to a matrix A using a unitary transformation Q,' then we can solve AX = B

But the collection of CORDIC cells that update a Cholesky matrix are performing just such a unitary

1 Actually, there is no requirement that be unitary.

43

transformation. This suggests that we might use the same CORDIC cells to solve for weights W/
using that Cholesky matrix as the matrix of coefficients in the linear equations.

Note that in section 2 it was noted that there are generally two sets of linear equations to
solve, the first set involving L and the second set involving L". But in the case of a sidelobe
canceller (a particular choice of the steering vector, S = [0,0,...,0,1]"), the first set can be solved

by inspection rather than by computation, so that only the second set, that involving L", needs to
be solved using the CORDIC cells.

The first set of equations to be solved was:

iy = s1=0
Iy +12y2 = s2=0
l31y1 + lsoy2 + l33yzs = s3=0
Iniy1 + ...+ Ivnvyy = sy =1
We can successively see that y;,y2....,yn_1 are 0. The last equation in the set reduces to

INNYN = s = 1,

so that yny = 1/lyn. In short, the vector Y that solves LY = S for the sidelobe canceller case is

Y= :,,HzM. No actual computing steps are needed—the answer is available by inspection.

However, we are still required to carry out computations to solve for W in the second set of

equations L"I" =Y = L9 Note that we can replace the scale factor :,,Hz by any other which

In 5=
suits us, since changing it would only scale H~ by a constant, which cannot affect the resulting

signal-to-interference ratio.

In the following discussion, we will assume that in each supercell the two columns of the
snapshot of L for which we want to solve for I’ are stored in a snapshot memory. The process
of solving for the weights can therefore be interleaved with updating the Cholesky matrix as more
antenna data is fed into MUSE.

To use CORDIC cells to solve L"II" = S, we begin by transforming the equation set into one

involving a lower-triangular matrix with a tacked-on vector. Define the “reversal” matrix J:

r 1 7

~
il

44

If we premultiply a vector or matrix by J. then the result is to reverse it top to bottom. If we
postmultiply a matrix by J. then it is reversed left to right. Note that JJ is an identity matrix.
Now we manipulate L"I1" = S. first by inserting J.J between L™ and W; next by premultiplying

by J to give
(JLRJY(JW) = JS.
And finally by conjugating the entire equation
(JLUJ)(JW)" = JS.
This equation is of the form AX = B where

A=JL"J.

B=JS,

and the form of A is a lower triangular matrix:

Inn
InN-1 In-1n—1

In2 Inc12 o0 e
In1 Incia o0 by i]

8.2 Description of the Q-operation

Of course, if we solve for X we immediately get 11" since W' = JX". The tacked-on vector
B is [1,0,0,...,0}". Changing L"W = S into AX = B, an equation involving a lower triangular
matrix, has been purely an exercise in notation. No actual computations are involved. We shall
now show how to solve AX = B in the array of supercells without moving the Cholesky matriz out

of the supercells in which it is already stored. This process is called the Q-operation.

It is easy enough to begin the process. The first step is to postmultiply the two columns made
up of B and the last row of L by a unitary matrix which zeroes out the leading element of B.

Inny 1
INN-1 O
In2 0

L Iva 0]

Inn is available in supercell 0. where it was created in its guise as supercell N-1. That
supercell should also have available the fixed constant b; = 1. The supercell determines its Q-
operation rotation controls (Q-op controls) in both its #-CORDIC and its ¢-CORDICs using these
two quantities as column leaders. These Q-op controls determine the operations performed on the
remainder of the two columns. But now we see what looks like a problem. The next step involves
the pair (In n-1,0). but {x n_1 is not available in supercell 0. It is. however, available in supercell 1,
which already has a connection to supercell 0. We can pass the Q-op controls pi from supercell 0 to
supercell 1 using only local connections and then carry out the postmultiplication which originated
with the pair (I n,1) in supercell 0 on the corresponding pair (IN.~-1,0) in supercell 1. Then we
pass the same Q-op controls to supercell 2 and apply them to the pair (In.N-2,0). We can move
the Q-op controls down the chain of supercells into supercell 31 in this way and then back up the
chain all the way back to supercell 0. After they have been used in supercell 0 on the pair (In1,0),
the Q-op controls are sent off the wafer, where they are stored for later use.

As aresult of all this, the first column of A and the tacked-on vector B are modified. No further
use of the first column of A will be made. Indeed, we don’t need to save it as it is computed. The
tacked-on column, B, has been modified so that its first value is zero. The remaining elements of B
(which were zero) are now nonzero values [by, b3, ..., bx]! which are available in supercells 1,2, ...,
respectively, where they were created by the rotations just discussed.

The next step is to postmultiply the second column of 4 and the modified tacked-on vector
by a unitary matrix to zero out the next element of the modified tacked-on vector.

[Inoan-1 b
INSiN—2 b3

IN—12 by

InZ131 by |

Both elements making up the first pair, (Ix_jn_1,b2), are available in supercell 1, by having
Jjust been computed there. These are the leaders used to set up Q-operation rotation controls in
supercell 1. These Q-op controls are moved to supercell 2 where they control the CORDICSs acting
on the pair (Iy_j,n_2,b3), then on to supercell 3 where they control the CORDICs acting on the
pair ({x—-1,n-3,bq), etc. Ultimately these Q-op controls also turn around at supercell 31 and travel
up the chain and are sent off the wafer at supercell 0. These Q-op controls are also stored for later
use. At the end of this step the elements of the now twice modified tacked-on vector [b3, by, .. .]
are available in supercells 2,3, ..., exactly where they will be needed to carry out the third step.
(The modified second column of A is no longer needed.)

A step during which Q-op controls are determined by vectoring is called a master Q-operation.
The steps during which these angles are used in CORDIC cells downstream are called slave Q-
operations.

Using this procedure, we can carry out the entire process of zeroing out the tacked-on vector
using CORDIC rotations of data that is never moved from supercell to supercell. The only information

46

that moves during the Q-operation is the Q-op rotation controls. These are passed only locally, to
the adjacent supercells. so no global communication paths are needed. Each set of Q-op controls is
ultimately passed off the wafer. where they are to be used in the final phase of weight determination.

In this final phase. the elements in the last column of the unitary matrix Q must be determined.
Although we have used the CORDICs to postmultiply [A | B] by @. @ was never determined in the
standard matrix form. The Q-op controls which have been passed off the wafer are all that is
needed to instruct CORDIC cells to carry out the operations which realize a postmultiplication by
Q. Therefore one can use any CORDIC cells with these same controls to postmultiply an identity
matriz by Q. This will give the elements of @, which can be used directly as the desired weights in
the nulling problem.

8.3 Summary of Revised MUSE Control and Timing

The systolic array presented in earlier sections was 100 percent efficient. Therefore there can
be no time available for the CORDICs to carry out the Q-operation. It was decided to interieave the
steps of the Q-operation with subsequent updating of the Cholesky factor, by providing two “idle”
microcycles in every macrocvcle. It is also necessary to revise the latency to compensate for the
longer macrocycle. Here the revised timing is summarized.

The fastest clock present in the system is called a half-step. A half-step is the time needed
to pass 11 bits between CORDIC cells. Two consecutive half-step intervals make a step and suffice
to move a word. The reciprocal of the step interval is the rate at which new data is presented to
an adder within anv CORDIC stage. Two steps are called a microcycle. A microcycle is the time
required to input one complex element into any #-CORDIC, and its reciprocal is the rate at which
new rotations may begin in any CORDIC cell.

The time interval between input of successive 64-element vectors into MUSE is 67 microcycles,
called a macrocycle. At the input to any 6-CORDIC cell the 67 microcycles are assigned to move
data as described in section 5 except that a blank microcycle is inserted between each tacked-on
vector. These blank microcycles are used to move Q-op controls.

Any macrocycle can be designated as a “snapshot” cycle. When the Cholesky factor has been
updated to reflect the effect of the vector fed into MUSE during a snapshot cycle, the Q-operation
is initiated. The interval between successive snapshot cycles is called an update cycle.

The timing of MUSE all builds up from the half-step. The CORDIC cell designed is capable of
being clocked at 12 MHz. Table 81 summarizes the various clock speeds and periods implied by
the 12 MHz half-step clock.

Since MUSE has 96 CORDIC cells, each performing three million new rotations per second, a
conventional computer requiring ten instructions per rotation would have to perform 2.88 billion
instructions per second to perform MUSE’s task.

47

The revised latency of a supercell, in units of microcycles, must be

. +1
A M .
TABLE 8-1.
Projected Speed of MUSE
Interval Duration Rate
Half-Step 831/3 ns 12 MH:z
Step = 2 half-steps 166 2/3 ns 6 MH:z
Microcycle = 2 steps 3331/3 ns 3 MHz
Macrocycle = 67 microcycles 22 1/3 ps 44.78 kHz
assuming
Update Cycle 300 6.7 ms 150 per second
macrocycles

48

9. RVLSI CELL DESCRIPTION

The CORDIC cell has been fabricated in 2pum CMOS and tested at the design speed. It amounts
to 54,000 transistors and is 5.5 mm? x 5.6 mm? excluding output drivers and bond pads. This
section briefly describes the cell layout. It consists primarily of a large datapath, two static RAMs,

and a chunk of control logic.

9.1 Cell Datapath

The main datapaths and functional blocks of the CORDIC cell are shown in Figure 9-1. Eleven-
bit data comes from the forward and reverse connections at the top. It is turned into 22-bit words
and passed into the input switching section, then down through the CORDIC stages and output
switching before being split into 11-bit words again. The delay memory is provided for the ¢-
CORDICs to delay L;; the snapshot memory stores one complete L for use in the Q-operation.
Along the right edge, the intracell serial communication path is shown; this carries information
during the Q-operation.

Inside the input switching box are several delay registers, two shift registers, two adders, and
a big multiplexer. The shift registers receive serial data from the serial path and can insert it
into the main datapath; this function is used by the 8-CORDIC cells for the Q-operation. The gain
compensation is split into three adders; the first two are in the input section to scale down the input
number slightly (by the factor 138/256). This ensures that preventable overflows are avoided.The
multiplexer allows one of six of data values to be entered into the datastream going to the CORDICs:
the input, the memory output, either serial register, the constant 0, or the constant 218 The last

two are only used by the Q-operation.!

The basic structure of the CORDIC stage was described in section 3; the sharing of one adder
between real and imaginary parts of a word is described in section 7.2. The resulting logic consists
of three registers, a one-of-two multiplexer, and an add/subtract unit. The CORDIC stages are 24
bits wide; 13 stages are required to meet the accuracy criterion described in section 6.

Within the output switching box are several delay registers, one serial register, and one adder.
The serial register puts data onto the internal serial path during the Q-operation in the ¢- CORDICs.
The adder completes the gain compensation (with a gain of 9/8). The delay memory simulates a
long shift register with a circular buffer. Address generation is provided by a simple counter that
resets to 0 upon reaching 51; each location is first read, then written. The snapshot memory stores
two L vectors acquired at different times as outlined in section 5. Its address generation is more
complicated and is described in the next subsection.

1 Since the input and output word-lengths of a CORDIC cell are the same, overflow cannot be
made impossible. For example, if the real and imaginary inputs are approximately equal and the
angle of rotation is near to —45°, we expect the real part of the output to exceed either input by
about v/2. While overflow for all possible inputs cannot be prevented, we can insist that overflows
occur only when the correct output data would not be representable in a 22-bit word.

49

FIN RIN

11

144248.8

SIN

11 2

SELECT

11

DELAY

DEMUX

22

INPUT
SWITCHING

SNAPSHOT
MEMORY
65 WORDS

DELAY
MEMORY
52 WORDS

\ﬂﬁ

CORDIC
STAGES

\ﬁx

Figure 9-1.

OUTPUT
SWITCHING

|I.I||v

pELay Y

MUX
ﬁ_
our

S ouT

Datapaths of CORDIC computation chip.

The serial path is used for a number of purposes, depending on whether the cell is a 6 cell
or a ¢ cell. In all cases it is onlyv used during the Q-operation. Q-op control data is passed from
supercell to supercell during the “blank,” but within the supercell the blank contains rotation
data. Therefore. the 6 cell receives parallel format angle values and passes them serially to the ¢
cells. The ¢ cells must output the angle value in parallel format. During a slave Q-operation, each
CORDIC stage must read one of the angle bits. while during a master Q-operation each stage must
set one of them. The internal serial path provides all of this capability; the control section ensures
that the operations occur at the right time.

9.2 Control

MUSE is a svstolic array and therefore depends on local communication for control. As men-
tioned in earlier sections, there are two control signals: D for direction control, and @ to indicate
when a snapshot should occur. Q may reach a 6 cell from either the forward or the reverse direc-
tion. All control is generated from these two inputs, plus one global input, ZERO. One update cycle
consists of the following: a snapshot in the forward direction, a snapshot in the reverse direction,
N — 2 slave Q-operations. and two master Q-operations. The Q-operations occur in both forward
and reverse directions and may be interleaved.

The outside world designates the beginning of a forward snapshot by asserting the @ line to
the first cell in the chain. The particular column of L next updated, called a snapshot vector,
will be operated on by each cell, and then copied into the snapshot memory. Each cell sees this
snapshot vector in two pieces, first in the forward direction and then in the reverse direction. Each
part of the vector is a different length as described in section 5, but the sum of the two lengths for
a given cell is always N+1. The forward vector is copied into the snapshot memory from address
0 upwards, while the reverse vector is copied into the memory from address N downward.

Each supercell in the chain follows the same rules for the Q-operation: when a forward Q-
operation is received, use the data pointed to by the reverse pointer and decrement the pointer.
If the reverse pointer is 0, generate a forward master Q-operation in the next blank. When a
reverse Q-operation is received, use the data pointed to by the forward pointer and increment the
pointer. If the forward pointer is N, generate a reverse master-Q operation in the next reverse
blank. Whenever a master Q-operation is generated, pass a slave Q-operation on down the chain.
Always pass along a slave Q-operation.

Once the reverse snapshot has finished, Q-operations may occur. In the first supercell, the
reverse pointer is 0 because its forward snapshot is N words long. Therefore, it generates a forward
master-Q operation as soon as the reverse snapshot is done, and passes a slave Q-operation to
the second supercell. The second supercell, whose reverse pointer was 1, decrements it to 0 and
then generates a master Q-operation. This pattern continues down the chain and back up again,
so that the first supercell finally carries out 63 slave Q-operations followed by its second master
Q-operation. One Q-op control value is passed off the wafer in the reverse blanks for each reverse
Q-operation the first supercell carries out.

10. WAFER SCALE CONNECTIONS

MUSE wafer wiring is simply an iteration of the connections for one supercell shown in Fig-
ure 10-1, plus certain peripheral circuits and connections. Note that there are three general classes
of connection nets. The first comprises data and the associated D and @ control signals, a bundle
of 11 to 13 conductors: the second, the serial paths between rotator cells of a supercell; and the
third, global clock and control signals, plus power. The bundled and serial classes together can be
described as “interconnections,” in contrast to global connections. The RVLSI cORDIC cells have
interconnection ports along one edge. global ports along the opposite edge. They are placed as mir-
rored images between alternating types of wiring channels, corresponding to the interconnections
and the global connections.

10.1 Interconnection

The bundled interconnections, which are a realization of the local communication of Figure 5-2,
are illustrated in a simplified form in Figure 10-2. The signal paths are serpentine, with a left-to-
right flow in one channel, right-to-left in the next, with each bundle represented as a single track.
The figure shows the interconnections of eight supercells, indicated by the subscripts, assembled
from 24 CORDIC cells. As on a real wafer, assignment is constrained by cell yield. Some cells, such
as those marked with central crosses in Figure 10-2, cannot be used, and others, with defective
memories corner crosses can be used only for the § function.

Note that in the upper channel the “F.” “R,” and “OUT” ports are in the order of forward
signal flow; if one has complete freedom of cell assignment, as for supercells 0 and 1, only three
tracks are necessary. In the lower channel the port order is contrary to signal flow, and four tracks
are required, as for supercells 4 and 5. In order to use cells with defective memory as 6 cells,
it is often necessary to use an extra track, as shown for supercells 2 and 3 of the forward-flow
channel and 6 and 7 of the reverse-flow channel, so that as many as five tracks may be required.
In experiments with a number of randomly placed defective cells, the JRT routing tool [11] never
required more than five tracks, so this can be taken as a practical upper limit.

Actual interconnect is, of course, for bundles, not single tracks. The interconnect channel must
accommodate five 13-track bundles, as many as five more tracks for serial signals, a test track for
proof of restructuring connections, and spares for possible defective tracks. Therefore, a channel
of 85 tracks was chosen, with the connections to the CORDIC cells by an array of five link fields of
the type shown in Figure 10-3, with potential links shown as circles. These links can connect the
tracks to cell ports, above and below the channel, via short vertical tracks known as stubs. The
stub labeling is consistent with Figure 10-1 except for the stubs labeled XIN, XIN2, and X0O,
which are spare ports for SIN, SIN2, and SOO.

The top track (labeled “16™) is for connection testing, and the remaining 16 are for interconnect.
The data, @, and D signals have links in a pair of chevrons, spaced three tracks apart. Primary
links for these 13 signals are in the lower chevron, spares in the upper. The final three spares are

53

TABLE 10-1.

Class Assignment of Tracks for Defect Avoidance

Class Bundled Signals w Tracks per Channel ;
0 Data 0,3,6.9; S | 30 b.
1 Data 1,4,7,10 25 _
2 Data 2585 | 25 q

net is formed, one of the stubs of the net is also linked to a test track, number 16 in the link field
of Figure 10-3, which is in turn connected to a wafer-edge pin. The photodiodes of the net can
then be consecutively illuminated by a low-power laser beam while photocurrent is sensed at the
pin. Upon completion of the test the stub is cut away from the test track.

The second test is of functionality of each cell as it is added to the circuit. For the MUSE
wafer, this means adding to the circuit the three CORDIC cells of a supercell, and then applying
stimuli to this added supercell while observing signal outputs. The technique is illustrated in Figure
10-4, which shows a step-by-step formation of the eight supercell simplified “wafers” of Figure 10-2.

Step A Three test bundles (shown as tracks) are linked up to provide access to all
supercell inputs.

Step B The last supercell of the chain (supercell 7 in this example) is connected, with
its output and reverse input brought out to wafer-edge pins, and its forward
input connected to one of the test bundles. This single supercell is tested.

Step C The next-to-last supercell is connected and tested in conjunction with the first,
with forward input connected to a different test bundle. The test bundle used
in Step B is now re-used as a permanent connection from the outputs of the
two @-CORDIC cells of supercell 6.

This procedure is repeated for each supercell in turn, until all have been connected. The important
point is that the test bundles use only track segments that will eventually be used in the interconnect
itself. At each stage in Figure 10-4, new interconnect is formed by cutting off segments of the old
test bundle. The only extra wafer wiring resources required are an additional set of wafer-edge pins
at the beginning of the chain.

56

0 0, @1 X @2 ¢3 x X

F out F Rout F out F out F o,w:
'lﬁm ut out o out out F out out out
6o @0 oy x 1 @2 ¢3 6, B3
X X
¢7 ®s x x X ¢s @5 b4
F out ¥ out F__out F out F ouf
>-
outl oult oul I3 out 13T} oul oul
¢7 o6 « 67 “ fs x fs b4 ®4

Figure 10-2. Symbolic bundled interconnections of eight MUSE supercells in two
wiring channels.

144248-11

R10 RS R8 R7 R6 R5 R4 R3 R2 R1 RO OUT OUT OUT OUT OUT FQ Q00 D00 SIN S00 SIN
1 3 5 7 9 IN 2

F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 FO OUT OUT OUT OUT OUT OUT RQ DIN XIN X00 XIN
0 2 4 6 8 10 IN 2

16 PP SR E0S00 0000000000000 ICNPC00CRIINIIEICCIORBIICRTROCERIIPRCPPIPCRIOPVPVPRCEEENINETRPRICERIOIINOOITEOEIIESIOSOIS
15 D S e - K . s RN RS POOSASSAASOAISE
14 R s Jn St & e 2 3
13 ol oo ——@ .-
F2 0 e e e e s e e - - >
1 T e e LS @@e L o s e e . > e -
RV S A A LIRS A 2 R L e =
] T B R
@ .o -*e - - - -
7 .o D
[ssee -
5 seece e .o .o
4 seoe e .
3 XX R} R R X IR
2 e e ssee e e
1 eoee e
0 -esesee

F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 FO OUT OUT OUT OUT OUT OUT RQ DIN XIN X00 XiN
0 2 4 6 8 10 IN 2

R10 RS R8 R7 R6 R5 R4 R3 R2 R1 RO OUT OUT OUT OUT OUT FQ Q00 DOO SIN S00 SIN
1 3 5 7 9 N 2

Figure 10-3. Link field for an interconnect channel. The stubs are labeled for their
eventual cell ports above or below the channel.

57

11. MUSE INVESTIGATION TEST EQUIPMENT (MITE)

11.1 Overview

A test and demonstration system (MUSE Investigation Test Equipment) has been developed
to permit us to investigate and demonstrate the performance of the MUSE wafer. MITE can send
inputs to MUSE at full speed and collect the angle data representative of the resulting weights.
Extensive software permits MITE to generate test data sets, interpret and display the results as
antenna patterns or nulling S/N improvement, and compare the results with results of a bit-by-bit
simulation of the wafer.

The primary objective of MITE is to test the full wafer. But prior to actual wafer fabrication,
MITE has been used to test individual CORDIC cells in a subscale processor that will be discussed
in appendix B. This subscale test is important for several reasons:

o It verifies the correct operation of MITE software and hardware.

e It verifies the correct operation of multiple CORDIC cells operating together in
the MUSE configuration and with the clocks and controls of the final wafer
scale system.

e It verifies the concept of operating a subset of supercells in the manner in which
they will be tested during the restructuring of the MUSE wafer, as described
in section 10.3.

The subscale tests for N = 8, using 12 CORDIC cells, have verified all aspects of the system
designs of both MUSE and MITE.

MITE allows an investigator to create sets of N-element data vectors drawn from a common
statistical ensemble, representing signals that could have been observed given a specific antenna
geometry and jammer scenario. Once the data sets have been created, they are stored in a memory,
from which they may be sent into MUSE at a high speed in any order specified by the investigator.
The investigator may create several different data sets, representing different jammer arrangements,
to examine the performance of MUSE as the statistics of the input data changes with time. MITE
is also able to initiate snapshot cycles in MUSE and obtain the resulting Q-operation angle controls,
which are captured in a second memory. The MITE then converts the Q-operation angle controls
into a corresponding weight vector and can generate graphical displays of the resulting performance
of MUSE.

Figure 11-1 shows the MITE test system with a four-supercell subscale MUSE configuration
under test.

59

144248-13

Figure 11-1. Photograph of MUSE Investigation Test Equipment (MITE).

11.2 MITE Architecture

Figure 11-2 shows a block diagram of the MITE. A PC/AT computer is used as the host of the

systenr. The PC/AT is responsible for generating input data, converting Q-operation angle controls

to weight vectors and generating displays and performance measures. The interface system consists

&.Zﬁvr:,mc::;:cicmm:;SE:,N.c‘ix,\i\?dcc::.:?.,3:,,::.,S,M,@Q,\x.x:;::a,f_::,N,cxtc:m:v::\wcx2
supplying MUSE with complex data samples, initiating snapshot cycles, and gathering the resulting

welght vector information from MU

11.3 Input Data Memory and Control

stem has three control signals to MUSE: D, ¢, and ZERO. Their respective

escribed in detail in section 9. The PC/AT uses an interrupt once per macrocycle

The d
functions are d
from the interface system to control @ and ZERO. The direction control, D, is generated by the

ata input s

control logic.

144248-15

DATA
FROM DATA TO
MUSE PC/AT
1 BUFFERS 8 8
—P AND ol FIFO p————ipp
LATCHES
IRQ TO
PC/AT
CONTROL COUNTER |—P

Figure 11-3. Output memory and control.

11.5 User Interface Software

11.5.1 Pull-down Menus

The software system is completely menu-driven. The system allows the investigator to create,
edit, view, and load the different types of parameter files used by the system. These parameter files
are stored on the hard drive of the PC/AT that allows the parameter files to be used at a latter
date.

11.5.2° Scenario Generation

The investigator may create Jamming scenarios in two ways. The first type of data set is
based on antenna patterns. The investigator can create a parameter file describing a simple main-
beam antenna, specifying its beam width and sidelobe levels, and another parameter file with the
locations and gains of the omnidirectional auxiliary antennas,! and vet a third parameter file that
specifies the directions and powers of multiple jammers. Using these three parameter files, the
PC/AT can create a scenario file, which is a collection of vectors drawn from a population with
statistics appropriate to the jamming and antenna geometry described.

Alternatively, the investigator may create a scenario file with no necessary physical significance,
but well suited to testing the fundamental S/N improvement limitations of MUSE without regard

! These may be specified individually or placed randomly by the PC/AT.

r

to the specifics of the antenna geometry or jammer locations. The mathematical description of this
type of scenario is described in appendix A.

11.5.3 System Operation

Scenario files must be loaded into the input memory. The investigator may select any desired
scenario files from the list of all previously created scenarios files, using the menu system. Next
the investigator loads an addressing information file, containing information that tells the system
in what order to use the scenario files, and how many vectors to use from each set.

The investigator must then load a file containing a list of snapshot cycles. These are the
macrocycles in which the system will order MUSE to start the process to solve for the weight
vector. The system will produce a weight vector for each snapshot cycle in the file.

The investigator is then able to start the system and then view the results. The setup infor-
mation and resulting weight vectors are written to a results file.

The performance of the weight vectors may be displayved in two different formats. The first
format, only valid for scenarios created with the antenna pattern, shows the original unnulled
antenna pattern, the nulled antenna pattern, and an optimally nulled antenna pattern. This plot
is repeated for each weight vector in the results file. The optimal pattern is the pattern which
would have been obtained if the weight vector had been solved using the ideal Cholesky factor and
using floating point Givens rotations to solve for the weight vector. The second plot shows the S/N
improvement vs time. In this plot, the S/N improvement is calculated for each weight vector using
the appropriate scenario matrix, and then the S/N is plotted vs the cycle number.

11.5.4 Simulation

The software includes a bit-by-bit simulation of the hardware to allow the results of the MUSE
system to be checked for accuracy. Once the user has specified the addressing information, the
snapshot cycles and the scenarios, a simulation of the MUSE may be performed instead of running
the data through MUSE. The simulation produces the same type of results file as discussed above,
and therefore, the results may be viewed using the methods discussed above.

63

12. SUMMARY

This report has described the complete design of a wafer scale adaptive nulling processor
called MUSE, whose individual cells carry out coordinate rotations using the CORDIC algorithm.
The CORDIC cells are almost 100 percent utilized and communicate with one another in a simple
systolic fashion. The high efficiency and modularity of the algorithm is achieved by interleaving
two data streams travelling in opposite directions, and depending on a careful choice of CORDIC
latency to avoid collisions.

A cORDIC cell including memory requires approximately 54,000 CMOS transistors and occupies
a 5.5 mm x 5.6 mm rectangle. It has been clocked at 12 MHz, so that an entire system of 96
such cells can update a 64-element weight vector for 300 observations in 6.7 ms. A conventional
computer would need to be capable of 2.88 Giga-ops to carry out the same task. Simulations
have demonstrated that the system can support 50 dB of S/N improvement. A yield analysis has
demonstrated that the entire MUSE system can be realized on a single wafer if cell yield averages
70 percent. Furthermore, the simple systolic communication permits using two or more wafers if
cell yield is too low.

The CORDIC cells’ main function is to update the Cholesky factor of the correlation matrix of
observed interference as new data is observed, with a new update approximately every 22 us. The
solution of a set of linear equations whose coefficients are a snapshot of said Cholesky factor gives
the desired nulling weights. The CORDIC cells are also used, in an interleaved fashion, to solve these
linear equations.

A short chain of twelve CORDIC cells. packaged as chips and representing one-eighth of the
system to be realized on a wafer, has demonstrated the correct operation of the cells, their systolic
communication, system timing. and S/N improvement. in short, all aspects of MUSE performance.
The wafer floorplan and a strategy for testing the wafer as it is restructured are completely designed.

65

APPENDIX A

CREATION OF DATA SETS WITH CONTROLLED CONDITION NUMBER
AND ACHIEVABLE NULLING PERFORMANCE

Let the data set we want to create be designated as U, a matrix with M columns and N rows.
Its columns are the vectors we will play into MUSE. Any nonsingular matrix may be expressed in
a singular value decomposition

U=EXV

where E is an N x N unitary matrix, V' is an M x M unitary matrix and ¥ is an N x M rectangular
diagonal matrix with positive elements, ¥;; = ;. Also.

oy 209> ...20n > 0.

In what follows, the matrix 1" will have only a very small role.

The correlation matrix for this data set is

T\/H
2k A
R=FEYFE"=F
AN -1

AN

with A; = Qw.

One of the quantities we want to control is the condition number of the data set. The condition
number is qh% We can always scale U appropriately so that on = 1. Without loss of generality,
assume that we have done so. Therefore, in addition, Ay = 1.

Once a weight vector " is found, by whatever means, v can be calculated, which is the
improvement in S/N for the steering vector S. Here is how we might do so for the special case of a
sidelobe canceller, S = [0,0,...,1]". The before signal power is S"S = 1. The before noise power
is S"RS. The after signal power is wlmmum_,m = |wy|?. The after noise power is W"RW. Thus the
S/N improvement for a general weight vector is

S"RS 2,

T T

The optimum weight vector is the solution to

S"RS
Vopt = ——— lwn|~, and
wik
WA
Vopt = M: mM L

In this last equation, wy depends on k. We can choose a value of k which makes wy come out to
be 1. In terms of the singular value decomposition of U, this value is

1

k= —r |
A ,
2o K‘;iw\Qw

Similarly

N
S"RS =" |eni*o?.

i=1

Therefore

N N
N\OENH AMU _m?;._mQWVAM ~m><LM\Q,Wv.

=1 i=1]

Now it is possible to choose U such that its singular values are “controlled” and yet consistent
with a given amount of S/N improvement.

Suppose only two distinct singular values are used:
oi=0 for 1<i<Kand
oi=1 for K <i<N.

In other words, we are modeling K equal amplitude and orthogonal jamming sources. The we must

have
K N K N
vopt = () _lenilo® + 3 feni) (Y lenilPo i+ S lewil?).
i=1 i=K+1 =1 i=K+1

Abbreviate w,nu len:|? as ¢ and hence MMMNTL lenil? as (1 — q). Then

i

Vopt = Sqm +1 - 839& +1—gq).

68

Therefore

1 -y
2) opt
g e e)
¢ Ty (02 +072)
The approach will therefore be to choose the desired S/N improvement Vopt and the desired condition
number o. Then we can solve for g, which tells us something about how the energy in the last row
of E is distributed. E can then be computed at random subject only to this constraint and to the
constraint that it is unitary.

However, not every possible choice of v4p and ¢ is compatible. ¢ must be real and positive.
The equation for ¢ will give complex roots unless

1- N\ONR

T Vot o
2—(oc?+072) —

W | e

This equation gives the set of possible scenarios plotted in Figure 6-1. The boundary Vopt =

w + 1(6% +1/0?) is also plotted in Figure 6-1.

To construct E, begin by constructing its last row. Without loss of generality this last row
can be purely real. Begin by constructing N random nonnegative real numbers p;, i = 1,..., N.
Normalize the first K so that their sum is ¢ and normalize the last 1 — K so that their sum is

(1-4q).

>‘
n = MP.
i=1
N
T, = > p

i=K+1

Pi < 7Di l1<i<K

i K+1<i<N.
Now set

enNi — /Pi-

Once we have the last row of E, the other rows can be determined sequentially by a Gram-
Schmidt orthogonalization procedure. For each new row we generate a completely random complex
Gaussian precursor row Y' and subtract off from it any components in the space spanned by the
rows already computed. We then normalize what is remaining in Y to have unit length (unless its
length is zero, in which case we must try again with a different random Y) and this becomes the
next row of E. The procedure is continued until we have all N rows of E.

69

APPENDIX B
TESTING A MUSE SUBSET

The choice of N = 64 substantiallv impacted the design of the CORDIC cell for MUSE. One
impact is due to the relationship between N and latency for latency controlled interleaving. A
second impact is in the size of memories built into the chip. For these reasons, the design of the
cell dictates the system timing.

For various reasons, it may be desirable to use the CORDIC cell designed for N = 64 to realize
an adaptive nulling system for smaller N. In the body of this report two such requirements are
mentioned: first, the desire to verify the operation of the MITE using CORDIC chips that were
fabricated to prove out the cell design: second, the testing of the wafer during restructuring, as
additional supercells are connected into the working svstem. For any even N’ less than N the MUSE
design can be used for adaptive nulling using 3N'/2 CORDIC cells of the type already optimized for
N = 64. The use will not be efficient.

The approach we take is to “imbed” the length N’ nulling problem into the larger length N
problem. Figure B-1 illustrates how an N’ = 4 input vector is imbedded in the middle of an N = 10
input vector, and how an N’ x N’ Cholesky matrix is therefore imbedded in the N x N Cholesky
matrix developed from it. The three leading elements of the input vector are forced to zero and
the last three elements may be set to any value—they are “don’t care” elements indicated by d’s .

[0 0
0 0 0
0 0 0 0
- 00 0 I,
I 0 0 0 Ly b
—
T3 0 0 0 Ga B2 s
T4 0 0 0 lyy lyo ULz lgs
d 0 0 0 d d d d d
d 0 0 0 d d d d d d
d 0 0 0 d d d d d d d

Figure B-1. 4 x 4 adaptive problem imbedded in 10 x 10 framework.

If the ten-element vectors of Figure B-1 are fed into a mini-MUSE made of five supercells, the
first three supercells in the five supercell chain (supercells 0, 1, and 2) will have a negligible effect
on the input vectors as they are passed forward since their function is to zero out the elements
which are already zero. Therefore it is easy to predict the form of the tacked-on vector that will
be the input to supercell 3, namely [z1, z2, 23.24.d,d, d].

Therefore we can provide only the last two supercells (in general the last N'/2 supercells), and
feed in the predicted vector preceded with the proper number of blank microcycles. Assuming that

71

the correct D, Q. and ZERO controls are provided, the two supercell MUSE will operate exactly as
if it were the last two supercells of the five supercell MUSE, and the imbedded Cholesky factor will
be computed. Signals can also be provided which initiate the Q-operation and the Q-op controls
will be emitted from supercell 3, in its backward direction, so that the weights can be computed.

The example with two actual supercells from a chain of five supercells easily and accurately
extends to the case of any smaller subset of a chain of 32 supercells. There are three points to

remember:

e The actual supercells must be consecutive and must include supercell 31.

e The timing must use 67 microcycles per macrocycle and the input vector,
direction, Q, and ZERO must appear as they would appear if the nonexistent

supercells were present.

¢ The leading supercell actually present must be provided with some number of
slave Q-operations to prompt it to initiate a master Q-operation at the correct

time.

72

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information s estimated 1o average 1 hour per response, includs

Budget, Paperwork Reduction Project (0704-0188). Wastungton. DC 20503

ng the hime for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, inctuding suggestions for reducing thus
burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Dawis Highway. Suite 1204, Arhington, VA 22202-4302, and to the Othice of Management and

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
18 May 1990

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

MUSE — A Systolic Array for Adaptive Nulling

with 64 Degrees of Freedom. Using Given Transformations
and Wafer Scale Integration

5. FUNDING NUMBERS

C — F19628-90-C-0002

6. AUTHOR(S)

C.M. Rader, D.L. Allen, D.B. Glasco, and C.E. ﬂlocas_mwm

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)

Lincoln Laboratory, MIT
P.O. Box 73
Lexington, MA 02173-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-886

HQ AF Systems Command AFSC/XTKT
Andrews AFB
Washington. DC 20334-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ES)

ESD-TR-90-019

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

algorithm and has been designed as a single integrated

and permits MUSE to be realized on a single large waf
of such a wafer is deseribed.

This report describes an architecture for a highly parallel system of computational processors
specialized for real-time adaptive antenna nulling computations with many degrees of freedom, which we
call MUSE. and a specific realization of MUSE for 64 degrees of freedom. Each processor uses the CORDIC

circuit. Ninety-six such processors working together

can update the 64-element nulling weights based on 300 new observations in only 6.7 ms. This is equivalent
to 2.88 Giga-ops for a conventional processor. The computations are accurate enough to support 50 dB of
signal-to-noise improvement in a sidelobe canceller. The connectivity between processors is quite simple

er, using restructurable VLSI. The complete design

14. SUBJECT TERMS
adaptive nulling
CORDIC

sidelobe canceller

restructurable wafer scale
integration
Givens transformations

Choleskv factor

16. NUMBER OF PAGES
86

voltage domain computation

systolic array
pipeline
latency-controlled interleaving

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
Unclassified Unclassified

20. LIMITATION OF
ABSTRACT

19. SECURITY CLASSIFICATION
OF ABSTRACT
Uneclassified

NSN 7540-01-280-5500

Standard Form 298 {Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

