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Abstract: In this paper, the performance of a fine-grain data synchronization scheme is
examined for both invalidate-based and update-based cache coherent systems. The work
first reviews coarse-gain and fine-grain synchronization schemes and discusses their ad-
vantages and disadvantages. Next, the actions required by each class of cache coherence
protocols are examined for both synchronization schemes. This discussion demonstrates
how invalidate-based cache coherence protocols are not well matched to fine-grain syn-
chronization schemes while update-based protocol are.

To quantify these observations, five scientific applications are simulated. The results
demonstrate that fine-grain synchronization always improves the performance of the appli-
cations compared to coarse-grain synchronization when update-based protocols are used,
but the results vary for invalidate-based protocols. In the invalidate-based systems, the
consumers of data may interfere with the producer. This interference results in an in-
crease in invalidations and network traffic. These increases limit the possible gains in
performance from a fine-grain synchronization scheme.
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1 Introduction

In shared-memory multiprocessors, data is often shared between a producer and one
or more consumers. To prevent the consumers from using stale or incorrect data, the
consumers must not access the data until the producer notifies them that it is available.
Typically, such systems use a coarse-grain synchronization scheme to synchronize this
production and consumption of data.

In such schemes, simple flags can be used to indicate that a given block of data has
been produced. For example, the producer of a data block first writes the data to a
shared buffer and then issues a fence instruction that stalls the processor until all writes
have been performed. Finally, the producer sets the synchronization flag. The consumers,
who have been waiting for the synchronization flag to be set, see the flag set and begin
consuming the data. Coarse-grain schemes may also use other synchronization methods
such as barriers. The coarse-grain synchronization schemes examined assume a release
consistency memory model [2].

A coarse-grain synchronization scheme has two basic disadvantages. First, the scheme



requires an expensive synchronization operation such as a flag or barrier to synchronize
the production and consumption of data. Second, the consumers are forced to wait until
the entire data block has been produced before they are able to begin consuming the data.

An alternative to the coarse-grain synchronization scheme discussed above is a fine-
grain scheme. In such a scheme, the synchronization information for each data word is
combined with the word. In this case, the producer creates the data and writes it to a
shared buffer. The consumers wait for the desired word to become available and then
consume it.

Fine-grain synchronization has several advantages. First, the consumers are able to
consume data as soon as it is available. This allows the consumption time of the available
data to overlap the production time of the subsequent words. Moreover, no expensive
synchronization operation is required; this means that the producer never needs to wait
for the writes to be performed.

In this work, we are interested in studying the performance gains from a fine-grain
synchronization scheme on scalable, cache coherent shared-memory multiprocessors. We
will show that fine-grain synchronization may improve performance of applications run-
ning on systems with either invalidate-based or update-based cache coherence protocols,
but that fine-grain synchronization is not a robust solution for invalidate-based systems
while it is for update-based systems.

The paper is organized as follows. Section 2 describes a typical coarse-grain syn-
chronization scheme and demonstrates the resulting work required by each class of cache
coherence protocols. Next, section 3 describes a fine-grain synchronization scheme and
demonstrates how the scheme overcomes the disadvantages of the coarse-grain scheme.
Section 4 describes the simulated architecture, the scientific applications and the cache co-
herence protocols examined in this work. Section 5 presents the simulation results. These
results compare the performance of fine-grain synchronization to coarse-grain synchro-
nization, and they also compare the relative performance of the cache coherence protocols
when fine-grain synchronization is used. Finally, section 6 concludes the paper.

Our work is the first to examine the performance of fine-grain synchronization on
both update-based and invalidate-based cache coherent multiprocessors. The work on
the Alewife [6] system examines the implementation details of a fine-grain synchroniza-
tion scheme, and their work gives an excellent description of the software and hardware
requirements for such a scheme. In their work, they demonstrate that a fine-grain syn-
chronization scheme may improve the performance of the given applications running on an
invalidate-based cache coherent system. Our work does not contradict their findings, but
rather expands them to demonstrate the instability of the combination of invalidate-based
cache coherence protocols and fine-grain data synchronization.

2 Coarse-grain data synchronization

Figure la shows the actions required for invalidate-based protocols using a coarse-grain
synchronization scheme. After producing the data, the producer writes it to a shared
buffer and waits for the writes to be performed. The writes are considered performed
when the producer’s cache has obtained exclusive ownership of the line (all necessary
invalidations have been performed) and the data has been written into the cache. The
figure assumes that the producer has already obtained exclusive ownership of the data
lines. After the writes have been performed, the producer sets the synchronization flag. If
the consumers have already read the flag, then this write must invalidate the consumers’
copies of the flag. The consumers, who are still waiting for the flag to be set, will imme-



diately reread the flag after it is invalidated, but the producer cannot release the flag’s
line until all the invalidations have been performed. Once the consumers see the flag set,
they can begin reading and consuming the data.
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Figure 1: Coarse-grain synchronization

Figure la illustrates the cost of a coarse-grain synchronization scheme using a simple
flag. The invalidation and reread of the flag by each consumer requires four network
transactions and the transfer of a line of data. The work to transfer the synchronization
information is more than the work to transfer one line of data. The size of the data block
could be increased to reduce this synchronization overhead, but the larger block size also
increases the waiting time of the consumers.

Figure 1b shows the actions required for update-based protocols. In this case, all
of the consumers have prefetched the synchronization flag and data block before the
data is written. When the producer writes the data, the consumers’ caches are updated.
The producer must wait for the writes to be performed (all updates acknowledged) before
setting the synchronization flag. The producer’s write of the flag results in the consumers’
caches being updated. When the consumers see the flag updated, they can begin using the
data, which is already in their caches. Figure 1c shows the resulting network transactions
if a write-grouping scheme, as described in our earlier work [5, 4], is used. In this case,
the data updates are grouped into larger, more efficient updates.

As in the invalidate-based case, the coarse-grain synchronization scheme has disad-
vantages. First, the cost of the coarse-grain synchronization operation is high. But the
cost is not in transferring the synchronization information itself, it is in waiting for the
updates to be performed (acknowledged). This synchronization scheme also forces the
consumers to wait until the synchronization point is reached before accessing the data,
but, unlike the invalidate-based case, the desired data is already in the consumers’ caches
as a result of the earlier updates. The coarse-grain synchronization scheme does not allow
the system to take advantage of these fine-grain updates.



3 Fine-grain data synchronization

A fine-grain synchronization scheme would overcome many of the disadvantages of the
coarse-grain scheme described in the last section. In a fine-grain synchronization scheme,
the synchronization information is combined with the data. Such a scheme may be im-
plemented in either hardware or software. In a hardware-based scheme, a full/empty bit
is associated with each memory word [8]. Alternatively, a software-based scheme may be
used in which an invalid code, such as NaN in a floating point application, is used to
indicate an empty word. Currently, all the applications under study use a software-based
scheme.

Figure 2 demonstrates how a producer and consumer interaction might be coded for
both coarse-grain and fine-grain (using a software-based scheme) data synchronization.
For the coarse-grain case, a simple flag, initialized to false, is used to synchronize the
production and consumption of data. For the fine-grain case, the data is initialized to an
invalid code. The consumer waits for each word to become valid and then consumes it.
For iterative applications, the data must be set to the invalid code between iterations.

Coarse-Grain: Fine-Grain:
Producer: Producer:
shared a[Count]; shared a[Count] = INVALID;

shared flag = false;
/* Produce Data */
/* Produce data */ for (i=0; i< Count; i++)
for (i=0; i< Count; i++) ali] = £();
a[i] = £();

/* Wait for writes to complete */

fence();
/* Set Flag */
flag = true;
Consumer: Consumer:
shared a[Count]; shared a[Count];
/* Wait for flag */ /* Consume a[i] */
while (flag == false) ; for (i=0; i< Count; i++) {
/* Consume ali] */ /* Spin waiting for data */
for (i =0;1i < Count; i++) while (a[i] == INVALID) ;
bli] = f(a[il); bli] = f(alil);

}

Figure 2: Code examples for coarse-grain and fine-grain synchronization

By their very nature, invalidate-based protocols are not well matched to fine-grain
synchronization schemes. The protocols do not allow consumers to maintain copies of a
data line while a producer writes to the line. This results in a very unstable solution.
Figure 3a shows the ideal timing diagram for invalidate-based protocols when a fine-grain
synchronization scheme is used. First, all the consumers read the first word of the data
block. When the producer writes this word, all the consumers’ copies must be invalidated.
But since the consumers are eagerly waiting for the data, they will immediately reread the
data line once it is invalidated. The invalidate-based protocols studied allow the producer
to continue writing into the cache line while invalidations are pending. This prevents the
producer from observing any write delay as the consumers read and reread the line. In
the ideal case, the invalidation latency is greater than the producer’s write time for the
line. When the consumers reread the line, they will find the line completely written. The
producer will not invalidate the line again; this gives the consumers all the time they need
to consume the line’s data for this ideal case.
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Figure 3: Fine-grain synchronization

However, figure 3b demonstrates the problem with invalidate-based protocols and
fine-grain synchronization schemes. In this case, the consumers have reread the line after
the initial invalidation but before the producer has completed writing the data. Now
the producer is required to invalidate the consumers’ copies of the line again, and the
consumers are forced to reread the line. The producer is able to release the line again
only after all the pending invalidations have been performed.

The relative timing of the writes and reads will have an enormous impact on the
performance of the system. If the writes occur in bursts, as they often do, the producer
will usually be able to produce many words of data between each reread by the consumers.
But the consumers, who will reread the line immediately after it is invalidated, will only
receive the data after all the consumers’ copies of the line have been invalidated. The
consumers will then be able to consume data only until the producer invalidates the line
again, which may occur soon after the consumer receives the data if the write rate is high.

The frequency with which these invalidations and rereads occur depends on two char-
acteristics of the application. First, the probability that the producer finishes writing the
line before the consumers attempt to reread it depends on the number of words written
to the line. This measure, known as the line utilization, will be used to classify the appli-
cation space. The other characteristic is the number of consumers. The more consumers,
the higher the probability that consumers will interfere with the producer’s writing of the
data.

The definition of update-based protocols offer a better match to fine-grain synchro-
nization schemes. Unlike the invalidate-based protocols, update-based protocols allow
consumers to maintain a copy of the data line while a producer writes to the line. Also,
the producer’s write of the data results in an update of all the consumers’ caches: a
proactive distribution of data rather that a reactive approach as in the invalidate-based
protocols in which each consumer is responsible for refetching an invalidated line. For
example, figure 3c shows the actions required for update-based protocols using fine-grain
data synchronization and write grouping. First, all the consumers prefetch the desired
data lines. As the producer writes the data, the writes are grouped and sent to the
consumers, and the consumers can consume the data as soon as it arrives.



Update-based protocols can also take advantage of the fine-grain synchronization
scheme in another way. Update-based protocols using a coarse-grain synchronization
scheme require that updates be acknowledged before the synchronization flag is set, but
in a fine-grain synchronization scheme, no update acknowledgment is needed because
the producer is never required to wait for the updates to be performed. This has the
largest impact on the distributed-directory update-based (DD-UP) protocol described in
our earlier work [4].

The update-based protocols offer a much more robust solution. The data prefetch
cannot degrade the performance of the fine-grain synchronization scheme as it can with
the invalidate-based protocols [4]. The prefetch can be issued as early as desired by the
consumers. Also, the relative timing of the producer’s writes and consumers’ reads can
not affect performance as in the invalidate-based protocols. The amount of work is fized
regardless of any variations in the timing of reads or writes.

4 Simulation methodology

The Care/Simple simulation environment [1] was used to simulate a set of scientific appli-
cations running on a shared-memory multiprocessor. The simulated architecture consists
of 64 nodes arranged in an 8 by 8 mesh. Each node consists of a processor/memory
element (PME) connected to its four nearest neighbors through a set of network queues.
A PME consists of a processor, cache, directory/memory and network interface. The
processor is a 100 MHz superscalar processor that is assumed to be load/store limited,
and the cache is a fully associative cache with infinite size. The cache has a single cycle
access time and a line size of 16 words. Each memory consists of a single bank of 100 MHz
synchronous DRAMs supporting page mode operation. The SDRAMs have 30 ns access
time for a page access with a page miss penalty of an additional 60 ns. The directory
consists of a 10 ns access time SRAM for all protocols. The network is order preserving
with static, wormhole routing and multicast.

The applications studied here include a simple, iterative partial differential equation
solver (PDE), a 3-D iterative partial differential equation solver using FFTs (3DFFT),
and three different methods of factorizing a matrix into triangular matrices: a multifrontal
solver (MF), sparse Cholesky factorization (SPCF), and LU decomposition.

Table 1 summarizes the important characteristics of the applications studied. The
number of consumers for each data block gives a measure of general contention for each
object and the maximum number of invalidates or updates that might be needed when
the data is modified. The line utilization is the percentage of each memory line that is
modified by the producer. For example, if the data is a dense vector, the producer is
likely to modify all the words in the given line. This would result in a line utilization
of 100%. If the data is a structure, the producer might only modify a few words, which
would result in a low line utilization. In the invalidate-based protocols using fine-grain
synchronization, these measures give an indication of the possible interference between
the consumers and producer of a line of data. The larger the line utilization or number
of consumers, the higher the probability of interference and extra invalidation and reread
cycles. The table also indicates the type of the coarse-grain synchronization: a simple
flag or barrier. The table specifies which applications are iterative and shows both the
number of synchronization events in each application and the average number of words
protected by each synchronization event.

The update-based protocols examined in this paper include the centralized-directory
update-based protocol (CD-UP) and the distributed directory update-based protocol



Applications I MF | PDE |  SPCF | LU | 3DFFT

Data Set (words) 1000x1000 | 32x32 | 1138x1138 | 64x64 8x8x16
Consumers 1 1 1.89 31.5 4
Line Utilization % 93.0 50.0 11.2 59.0 50.0
Sync Type Flag Flag Flag Flag | Barrier
Iterative No Yes No No Yes
Sync Events 332 1120 2118 2016 678
Words/Sync Event 49.8 8.0 4.9 44.4 18.6

Table 1: Application characteristics

(DD-UP) described in our earlier work [4, 3]. The update-based protocols use the write-
buffer grouping scheme also described in our earlier work [5]. The invalidate-based proto-
cols examined include a centralized directory invalidate-based protocol (CD-INV), which
is similar to DASH [7], a singly-linked distributed directory invalidate-based protocol
(SDD) [9] and a doubly-linked distributed directory invalidate-based protocol (SCI), which
is the IEEE standard protocol.

5 Results

The relative performance of the fine-grain synchronization scheme compared to the coarse-
grain scheme and to a common base (CD-INV) is illustrated in figure 4. Table 2 gives
the ratio of invalidations (updates) required and the relative change in total network
traffic for the fine-grain synchronization case compared to the coarse-grain case for the
invalidate-based (update-based) protocols.
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Figure 4: Performance of fine-grain synchronization

For the invalidate-based protocols, the performance of the fine-grain synchronization
scheme varies. For the applications with small blocks and few consumers (PDE and



Invalidate-Based Protocols Update-Based Protocols
Ratio of invalidations Ratio of network traffic Ratio of updates Ratio of network traffic
CD-INV | SDD | SCI CD-INV | SDD | SCI CD-UP | DD-UP CD-UP DD-UP
PDE 0.93 0.93 0.93 0.67 0.55 0.51 1.85 1.91 0.87 1.09
SPCF 0.94 0.97 0.95 0.41 0.51 0.50 0.73 0.73 0.40 0.44
MF 10.7 7.08 4.07 0.81 0.81 0.80 0.98 0.84 0.84 0.84
3DFFT 1.00 1.08 1.14 0.98 1.07 0.99 1.38 1.38 0.84 1.13
LU 4.42 3.67 3.42 1.24 1.32 1.59 0.40 0.41 0.34 0.71

Table 2: Ratio of invalidations/updates and network traffic

SPCF), the fine-grain synchronization scheme improves the performance of the appli-
cations compared to the coarse-grain synchronization case. In these applications, the
coarse-grain synchronization operation is costly, as each synchronization point protects
only a small block of data: 8 words for the PDE application and 4.9 words for the SPCF
application, as summarized in table 1. Therefore, the elimination of this coarse-grain
synchronization operation outweighs any extra invalidations or network traffic generated
by the fine-grain scheme. The fine-grain synchronization has actually reduced the total
number of invalidations compared to the coarse-grain case for these two applications, as
illustrated in table 2 for all the invalidate-based protocols. With the small block sizes
of these applications, the producer was able to write the full block before the consumers
could reread the line after the initial invalidation. The single invalidation per block acted
as a synchronization or triggering event. The elimination of the explicit synchronization
also significantly reduced the network traffic for these applications, as shown in table 2.
This resulted in an improvement in execution times for the PDE and SPCF applications,
as shown in figure 4a for the invalidate-based protocols.

As the line utilization increases, the consumer and producer interference also increases.
For the MF application, the number of invalidations was small for the coarse-grain syn-
chronization case. This indicates that the consumers were not always eagerly consuming
the data. The fine-grain synchronization increased the number of invalidations signifi-
cantly, but the overall traffic was reduced since the extra invalidation traffic was less than
the traffic eliminated by the elimination of the explicit coarse-grain synchronization events.
The actual execution time increased for the CD-INV and SCI protocols, but decreased
for the SDD protocol. The difference in execution time between the invalidate-based pro-
tocols arises from the particular producer-consumer interaction that was interfered with.
For the SDD protocol, the interference was off the critical timing path of the application
and in the critical path for the other two invalidate-based protocols.

For the 3DFFT application, the iterative nature of the application required approxi-
mately twice the number of shared writes for the fine-grain synchronization case as com-
pared to the coarse-grain case because the data must be set to an invalid code between
iterations. As shown in table 2, these extra writes created at least as many invalidations
as were eliminated by the fine-grain synchronization, and the resulting network traffic
remained almost constant for the same reason. The small number of consumers increased
the execution time of the distributed directory invalidate-based protocols (SDD and SCI)
slightly more than the centralized-directory protocol (CD-INV). Overall, the fine-grain
synchronization scheme did not improve the execution time for the 3DFFT application
when invalidate-based protocols were used.

As the number of consumers and the line utilization increased, the consumer and
producer interference also increased. For the LU application, fine-grain synchronization



increased the number of invalidations and network traffic, as illustrated in table 2. With
relatively inexpensive coarse-grain synchronization in this application, the increase in
invalidations and network traffic outweighed any performance gains from the elimination
of the coarse-grain synchronization operations. Again, fine-grain synchronization offered
no improvement in execution time for systems with invalidate-based protocols.

For the update-based protocols, fine-grain data synchronization always improved the
performance of the applications, as illustrated in figure 4a. The fine-grain synchronization
decreased both the number of updates and the network traffic for non-iterative applica-
tions (SPCF, MF and LU), as shown in table 2. For the iterative applications (PDE and
3DFFT), the extra writes to clear the data between iterations increased the number of
updates for both update-based protocols. The network traffic was reduced for the CD-UP
protocol, but it increased slightly for the DD-UP protocol.

The fine-grain synchronization scheme had the largest impact on the DD-UP protocol
when the number of consumers was greater than one (SPCF, 3DFFT and LU). In these
applications, the coarse-grain synchronization scheme required the producer to wait for
the updates to be propagated down the list of caches and then acknowledged. This limited
the performance of the DD-UP protocol; the fine-grain synchronization scheme removed
the need for these acknowledgements.

Figure 4b shows the relative execution time of the applications using fine-grain syn-
chronization compared to the centralized directory invalidate-based protocol (CD-INV).
As shown in the figure, the update-based protocols always perform better than any of the
invalidate-based protocols when a fine-grain data synchronization scheme is used.

For the invalidate-based protocols using fine-grain data synchronization, the SDD
protocol performed better for the applications with a single consumer. In these cases,
the memory write backs of the CD-INV protocol were unnecessary since the data was
not read from memory again because cache-to-cache transfers were used to transfer the
data to the single consumer. But as the number of consumers increased, the invalidation
latency of the distributed directory protocols resulted in longer execution times compared
to the base CD-INV protocol.

For the update-based protocols, the performance of the two protocols was almost
identical except for the SPCF application. The improvement in performance compared to
the base CD-INV protocol was best for applications with high line utilization and a large
number of consumers (LU). As the number of consumers decreased, the improvement from
the update-based protocols also decreased compared to the CD-INV protocol. Compared
to the SDD protocol, the improvement was less for applications with a single consumer,
but it was more for applications with multiple consumers.

6 Conclusions

In summary, the fine-grain data synchronization scheme, when used with invalidate-based
cache coherent systems, did not offer a robust solution. It only improved the performance
for applications with a small number of consumers (less than 2) and a low line utilization.
These application characteristics tended to avoid consumer interference. On the other
hand, systems with update-based protocols could take advantage of the fine-grain syn-
chronization scheme. The resulting execution times were always less than the coarse-grain
synchronization case, and they were always less than the corresponding execution times
for the invalidate-based systems using fine-grain synchronization.

The performance of fine-grain synchronization was unstable when invalidate-based
cache coherence protocols were used because the definition of the invalidate-based pro-



tocols prevented the producer and consumers from actively sharing a memory line. The
producer was required to obtain exclusive ownership of the line before writes could be
performed. Consumers who might be consuming data from the line were forced to give
up their copy of the line. The simulated results of the fine-grain scientific applications
demonstrate the performance loss that can occur as the producer and consumers interfere
with each other.

The definition of update-based protocols offered a much better match to the fine-grain
data synchronization. The protocols allow multiple producers and consumers to maintain
copies of a given memory line at the same time; the producer and consumers of data can
not interfere with each other. Overall, our earlier work and this work have demonstrated
the performance gains that can be achieved with update-based cache coherence protocols.
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