Write Grouping for Update-Based
Cache Coherence Protocols

David B. Glasco Bruce A. Delagi Michael J. Flynn
glasco@umunhum.stanford.edu bruce.delagi@Eng.sun.com flynn@umunhum.stanford.edu
Phone: (415)336-6760 Phone:(415)336-5201 Phone: (415)723-1450
Computer System Laboratory Computer System Laboratory Computer System Laboratory
Stanford University Stanford University Stanford University

Abstract

In our previous work, we demonstrated the possible performance gains from update-based
cache coherence protocols for a set of fine-grain scientific applications running on a scalable
shared-memory multiprocessor. In this paper, we examine in detail the hardware-based write
grouping scheme presented in our earlier work. First we describe both software-based and
hardware-based write grouping schemes. The software-based scheme, with its perfect knowl-
edge of the application’s write pattern, is able to achieve optimal write grouping efficiency, but
not without added complexity to the application’s code. Nevertheless, we use the software-
based scheme to determine the optimal grouping efficiency for each application studied, and
then demonstrate that the hardware-based write grouping scheme is almost as efficient as the
software-based scheme, but it requires little, if any, software modifications.

We also explore slight modifications to the hardware-based write grouping scheme. These mod-
ifications include varying the delay used to improve the write grouping efficiency and changing

the location of the write grouping buffer.

1 Introduction

In our previous work [4], we demonstrated the possible performance gains from update-based
cache coherence protocols as compared to invalidate-based protocols for a set of fine-grain sci-
entific applications running on a scalable shared-memory multiprocessor. The previous work
identified two limitations of the update-based protocols: a mismatch between the granularity
of synchronization and the fine-grain data updates and the inefficiency of single word updates.
We proposed a fine-grain data synchronization scheme to allow for a better match between the
granularity of synchronization and the fine-grain data updates [4]. This work is discussed in
greater detail in [3]. We also proposed a write grouping scheme to improve the efficiency of the
write updates [4], and in this paper, we further examine write grouping for update-based cache
coherence protocols.

The goal of write grouping is to group single writes destined for the same memory line into
larger, more efficient write groups. Grouping is able to improve performance in two ways. First,
grouping writes allows the cost of the network header to be amortized across all words in the
group. This reduces network traffic. For example, figure 1 shows the number of network words
required to transfer a portion of a memory line using a line transfer, single word updates or a
grouped update. The y-axis is the resulting network traffic, and the x-axis is the line utilization.
The line utilization is the number of modified words in the memory line that must be transterred.
For line transfers, as used by invalidate-based protocols, the network traffic is constant regardless
of the line utilization. For single word updates, every write update requires 3 network words: a
two word header plus the data word. But by grouping the writes, the resulting network traffic is

always less than or equal to the traffic required by the line transfer; the grouped updates result in

the minimal network traffic necessary to transfer the line’s modified data. The second advantage
of grouping is that the cost of memory updates can also be amortized across more words in a

grouped update than in a single word update.

Network Traffic
Line Size = 16 words
50 Packet Header = 2 words
// ’
-
// —— Line Transfer
D40 F el -=--- Single Word Update
g o0 Grouped Update
z et
et .
& X7
‘*é 30 %-\(/\Q:/)//
= e
4 .
1S) Pid
2 .
% 20 e ’ Line
Z
-
et Gmu?_e_d_ .
10 7 e
L
-
2l
0

6 i 16
Line Utilization (Words Modified)

Figure 1: Network Traffic

Write grouping can be accomplished using a software-based or hardware-based scheme. In
a software-based scheme, compile time analysis is used to identify writes to shared data. The
compiler issues these writes with a special non-updating write and issues special write-line in-
structions to initiate the data updates. Section 2.1 explains the software-based scheme in more
detail. In a hardware-based scheme, writes to the same memory line can be grouped into larger
write groups at the write buffer, as described in section 2.2.

The paper is organized as follows. Section 2 describes the software-based and hardware-based
grouping schemes in more detail. Section 3 describes the simulated architecture, the cache
coherence protocols, and the scientific applications studied in this paper. Section 4 examines
the performance of the grouping schemes, and section 5 examines variations in the hardware-

based grouping scheme. These include varying the delay introduced to increase the opportunity

for write grouping and changing the location of the write grouping buffer. Finally, section 6

concludes the paper.

2 Write grouping

2.1 Software-based write grouping

With perfect knowledge of the application’s write pattern, software-based write grouping is able
to achieve optimal efficiency by grouping all shared writes to the same memory line into a single
write group. Compile time analysis is used to identify writes to shared data, and the compiler
would issue these writes using a special write-no-update instruction. This instruction would write
the word into the cache and set a special update-pending bit for the word!. After all the words
written to a given memory line have been issued, a special write-line instruction is issued that
causes the words in the cache line with the pending-update bit set to be grouped into an update
packet and forwarded to the directory. These special instructions are ignored if the line is in an
exclusive state where there are no other shared copies of the line and, therefore, no updates are
required.

The scheme places a large burden on the compiler. First the compiler must identify writes
to shared data and issue them with a special write-no-update instruction. Next, the compiler
must issue the special write-line instruction after all the writes to a give line have been issued.
Note that a write line instruction is required for each memory line with pending updates. If
the application is data independent, the compiler may simply insert these instructions at the

proper location in the code. Alternatively, the compiler may insert code around each write to

1Each cache line already has a set of valid bits used to allow the protocols to write words into the line while
the line is in a pending state awaiting a miss reply. These bits can also be used as the update-pending bits when
the cache line is in a shared state.

generate the necessary write-line instructions at run time. In this case, the code must maintain
the line address of the last shared write. When the line address of the writes change, a write-line
instruction is issued for the last line address. This run-time implementation would add several
instructions per write and would require the use of a register to maintain the last line address.

Figure 2 shows an example loop and illustrates how the software-based schemes may be im-
plemented. The original code is a simple loop that computes a set of values for the shared vector
a. For the compile-time grouping, the loop is unrolled into segments that are of length equal to
the memory line size. The writes are issued using the special Write NoUpdate instruction that
writes the values into the cache but does not initiate an update. Then, after the full line of data
has been produced, the WriteLine instruction is issued for the line to initiate the update. This
is repeated for each memory line. For the run-time grouping, each write is again issued with the
Write NoUpdate instruction, but the line address of the write must be compared with the line
address of the last write. If they are not equal, a WriteLine instruction is issued for the last
line, and the last line pointer is set to the new line address. A final Write Line instruction must
be issued to initiate the update for the last line’s data.

As illustrated from the above discussion, the software-based scheme may be difficult to im-
plement efficiently, but the scheme is able to achieve optimal grouping efficiency by grouping all
writes to a given cache line. We will use the compile-time software-based scheme to compute
the optimal grouping efficiency for each application studied and show that the hardware-based

scheme presented in the next section can approach this efficiency.

shared float a[30], b[30], ¢[30];

for 1=0;i<31;i++)
a[i] = b[i] * c[i];

a) Original Code

shared float a[30], b[30], c[30];

/* Unroll loop into line size
segments */
for i=0;i<16;i++) {
/* Write data */
temp = b[i] * c[i];
WriteNoUpdate(a[i] temp);
}

/* Issue update for line */
WriteLine(&(a[0]));

for (i = 16; i< 31; i++) {
/* Write Data */
temp = b[i] * c[i];
WriteNoUpdate(a[i] temp);
}
/* Issue update for line */
WriteLine(&(a[16]));

b) Compile-Time grouping

(Line size = 16 words)

shared float a[30], b[30], ¢[30];

/* Set line address */
LastLine = &a & Oxfffffff0
for (i=0;1<31;i++) {
temp = b[i] * c[i];
/* Write data */
WriteNoUpdate(a[i], temp);
/* Write to new line ? */
if (&(a[i]) & Oxfffffff0) != LastLine) {
/* Issue update for last line */
WriteLine(LastLine);
/* Set line address */
LastLine = &(a[i]) & Oxffffff0;
}
}

/* Issue update for last line */
WriteLine(LastLine);

¢) Run-Time grouping

Figure 2: Software-Based Write Grouping

2.2 Hardware-based write grouping

In a hardware-based write grouping scheme, writes are grouped as they are written into the write
buffer as shown in figure 3. The scheme requires an additional grouping bit for each word in the
write buffer. As the processor issues the writes, the line address of the write is compared with
the line address of the last write inserted into the write buffer. If the write is to the same line,
the additional grouping bit is set to 1, indicating that the write should be grouped with the last
write inserted into the write buffer. When the cache processes the writes from the write buffer,
it consumes all writes in a write group, and it is able to issue the write update, if needed, in a
larger, more efficient packet.

A write group is delayed in the write buffer until either

1. the write buffer fills,

Last Line Address Grouping bit of 0 indicates

start of new group
Match
Grouped Writes
[e e e e,

——»{1/1/0/0|1[0 »
8
a2)
5 » » 'ﬁ
8 Ll Ll]
£ Address/Data Full @)

‘H Write Buffer

L "Write Available"

Delay

Figure 3: Hardware-Based Write Grouping at the Write Buffer

2. a write to a new line is received, or

3. the delay timer expires.

The first two conditions are obvious. Once the write buffer fills or a write to a new line is
received, no more writes can be grouped with the current write group. The third condition
is used to increase the grouping window for each write group. This delay prevents the cache
from consuming writes as fast as the processor is able to issue them; the delay sets the minimal
grouping window for each write group. The base case sets the delay count at five cycles.

Figures 4 shows an example of hardware-based write grouping. In the figure, the processor
issues 7 writes labeled Wi where 1 is the address of the write. In the example, the line size is 2
words and the write grouping delay is 3 cycles. Writes W0 and W1 are grouped into a two word
write group because they are writes to the same line. Write W5 cannot be grouped with the
WO0,1 group since it is a write to another line. This writes triggers the sending of the first write
group, W0,1, to the cache. No writes follow W5 and the delay timeout expires resulting in W5
being sent to the cache. Writes W2 and W3 are grouped, but write W9 is a write to another line
so it triggers the sending of write group W2.,3 to the cache. Finally, write WO is issued, which

causes write group W9 to be sent to the cache. No writes follow W0 so the delay timeout expires

and the write is sent to the cache. Notice that the delay timeout only affects the last write in a

write burst.

2) Writes to 3) Delay Timeouts

new line (3 Cycles)
A

" Processor Write Stream
WO,W1,W5<« ———» W2,W3W9,W0,<«————+» Wi to offset i
Line size =2

e d hnnd Ny e ! hd
Wo0,1 W5 W2,3 W9 WO
Write Groups
to cache

Figure 4: Hardware-Based Write Grouping Example

The grouping hardware adds an extra pipeline stage to the write buffer. Writes now take a
minimum of two cycles to reach the cache, but the write buffer may still accept writes at a rate

of one per cycle.

2.3 Grouped update network packet

To send the grouped update efficiently, a bit vector is used to indicate the line offsets of the
grouped writes. In this vector, bit b; would be 1 if the data words in the packet included an
update for offset ;. This requires that the data following the packet header be arranged in
ascending offset order, as shown in figure 5. To achieve this ordering for the software-based
scheme, the cache simply reads the update-pending words in the proper offset order. For the
hardware-based scheme, the cache must first read the write group from the write buffer. These
writes may be in any offset order and may contain multiple writes to the same offset. Next, the
words are written into the cache line using the valid bits, as in the software-based scheme, to

indicate which words of the cache line have been modified. Finally, the words are read from the

cache line in the proper offset order, and the update packet is generated. The valid bits are then

cleared.
32 bits
Line Address Op
Two word (28b) (4b)
packet header Offset Mask | Src | Dst | Cnt
(16b) (6b) | (6b) | (4b)
Data Word Offset i
(32b)
Increasing
e Offsets
L]
L]
i<j
Data Word Offset j i#]
(32b)

Figure 5: Grouped Update Packet

3 Simulation environment

3.1 Simulator

The Care/Simple simulation environment [6] was used to simulate the set of scientific applications

described in section 3.4. The simulations were application driven rather than trace driven.

3.2 Simulated architecture

The simulated architecture consists of 64 nodes arranged in an 8 by 8 mesh, as shown in figure 6.
Each node consists of a processor/memory element (PME) connected to its four nearest neighbors
through a set of network queues.

A PME is shown in figure 6. The processor is a 32 bit, 100 MHz superscalar processor that is
assumed to be load/store limited, and the cache is a fully associative cache with infinite size. An
infinitely-size cache is used to separate the effects of a limited cache size and the actions required
by the cache coherence protocols. The cache has a single cycle access time, a line size of 16 words,

and is connected to the network and memory by a 100 MHz, 32 bit bus. Each memory module

/ Reply Request
Network Network

/]] 128 Word Queues
/ HE E5HE
/
/
/
/ Reply Bus - 100 MHz
)/ Request Bus- 100 MHz & v A
e v / A A
7 e
-
e B B HE &
> e Request Reply Request Reply
SN % A Cache Directory /Memory
~ \
~ A
\ Cache: — Write Buffer (16 Words)
Node Fully associative <— [ocation of hardware Static RAM directory:
\

Infinite size . - i 10 ns ss ti
based writ ns access time
\\ 10 ns access time 4 ased wrile grouping Sync DRAM memory:
\ 16 word lines Superscalar 30 ns access time
\ 100 MHz Processor 60 ns page miss penalty|

\ 10 ns per word
\ Load/Store limited

64 nodes arranged in an
8x8 mesh interconnect
with separate reply and
request networks

PME

Figure 6: Simulated Architecture

consists of a single bank of 100 MHz synchronous DRAMs supporting page mode operation. The
SDRAMs have 30 ns access time for a page access with a page miss penalty of an additional
60 ns. The directory consists of a 10 ns access time SRAM for all protocols.

To avoid deadlock, each node is connected to both a reply and a request network. Request-reply
deadlock is avoided by guaranteeing that the replies will eventually be consumed at their des-
tination. Request-request and reply-reply deadlock require a timeout to break the deadlock [8].
The network is order preserving with static, wormhole routing [1] and multicast. Multicast is
only used by the centralized directory protocols when there are multiple caches that must be

updated or invalidated.

3.3 Update-based cache coherence protocols

The update-based cache coherence protocols examined in this work include the centralized-
directory update-based protocol (CD-UP) and the singly-linked distributed directory update-

based protocol (DD-UP). Both are described in our earlier work [4]. The centralized directory

10

protocols assume a full mapped directory [7].

3.4 Scientific applications

The applications studied here include a simple, iterative partial differential equation solver
(PDE), a 3-D iterative partial differential equation solver using FFTs (3DFFT), and three differ-
ent methods of factorizing a matrix into triangular matrices: a multifrontal solver (MF)?, sparse
Cholesky factorization (SPCF), and LU decomposition.

The amount of write grouping possible for each application is determined by the application’s
average line utilization. The line utilization is the percentage of each memory line that is modified
by the data producer. For example, if the data is a dense vector, the producer is likely to modify
all the words in the given line. This would result in a line utilization of 100%. If the data
is a structure, the producer might only modify a few words, which would result in a low line
utilization. Table 1 shows the average line utilization for the applications studied. Applications
with low line utilization will have little opportunity for write grouping, but in these cases the

single word updates will not result in excessive network traffic, as illustrated in figure 1.

‘ Applications H MF ‘ PDE ‘ SPCF ‘ LU ‘ 3DFFT ‘
Data Set (words) 1000x1000 | 32x32 | 1138x1138 | 64x64 | 8x8x16
Line Utilization % 93.0 50.0 11.2 59.0 50.0

Table 1: Application characteristics

The applications studied use two different types of data synchronization. The first type is

the typical coarse-grain (Block) synchronization using a release consistency memory model [2].

2The MF application has two distinct phases of operation [5]. Initially, the application exhibits large amounts
of parallelism in the computation of independent submatrices. As the computation continues, the number of
independent submatrices decreases, at which time each submatrix can be computed using a parallel LU technique.
This study of the MF application examines only the first phase of this computation.

11

In this case, a flag or barrier is used to synchronize the production and consumption of data,
as described in our earlier work [4]. The second type of synchronization is a fine-grain (Word)
synchronization. In this case, the synchronization information is combined with the data word
and, therefore, all explicit synchronization events are eliminated. This is also described in our

previous work [4, 3].

4 Write grouping performance

4.1 Grouping efficiency

Table 2 shows the average write group size for the two update-based cache coherence protocols
using both software-based (SW) and hardware-based (HW) write grouping schemes. The average
write group size is given for both coarse-grain (Block) and fine-grain (Word) data synchronization
for the five applications under study. Block synchronization requires explicit synchronization
such as flags or barriers, and these variables are allocated on separate memory lines to avoid
false sharing. Therefore, synchronization writes cannot be grouped with any other writes, and
this results in a write group of one word. This reduces the average write group size. In contrast,
word synchronization combines the synchronization information with the data word. In this
case, the average write group sizes are slightly larger than in the block synchronization case; the
difference indicates the relative frequency of synchronization writes to data writes.

With ideal knowledge of the applications’ write patterns, the software-based scheme is able
to group all writes destined for the same line into optimal write groups. The actual size of the
optimal write group is determined by each application’s average line utilization, which was given
in table 1. The higher the line utilization, the larger the optimal write group. The maximum

write group size is 16 words, a full memory line.

12

| Applications || Sync || CD-UP-SW | CD-UP-HW | DD-UP-SW | DD-UP-HW |

MF Block 13.2 13.2 13.2 13.2
Word 14.9 14.9 14.9 14.9
PDE Block 4.5 4.4 4.5 4.4
Word 8.0 7.9 8.0 7.9
SPCF Block 1.4 1.4 1.4 1.4
Word 1.9 1.9 1.9 1.9
3DFET Block 3.0 1.8 3.0 1.9
Word 3.5 2.2 3.5 2.3
LU Block 9.5 9.5 9.5 9.5
Word 9.5 9.5 9.5 9.5

Table 2: Grouping Efficiency - Words Per Update Packet

As indicated in table 2, the hardware-based grouping scheme is almost able to achieve the
same write grouping efficiency as the software-based grouping scheme for both update-based
protocols. The one exception is the 3DFFT application. In this application, the average shared
data write rate is too low to be captured by the hardware grouping scheme using a five cycle
grouping window. In section 5.1, we will examine the effect of varying the length of the write

grouping window.
4.2 Execution time

Figure 7 shows the relative execution times for the applications using the two grouping schemes
compared to the non-grouping case for each update-based protocol. For all applications, except
3DFFT, the hardware-based scheme resulted in about the same or faster execution time compared
to the software-based combining scheme for both update-based protocols. The hardware-based
scheme did not perform as well for the 3DFFT since the write grouping was sub-optimal compared
to the software-based scheme, as described in section 4.1,

The software-based grouping scheme resulted in a longer execution time than the hardware-

13

Relative Execution Time of Grouping Schemes Relative Execution Time of Grouping Schemes

Compared to Non-Grouping Case for CD-UP Compared to Non-Grouping Case for DD-UP
120 120
SW Combining SW Combining
HW Combining HW Combining
1.00 - 1.00 -
@

H E
2 075F = 075
] £
| £
g g
& &
£ 050 2 050
E =1
= =
& &

0.25 - 025

0.0 — 0.0 —

MF PDE SPCF FFT LU MF PDE SPCF FFT LU MF PDE SPCF FFT LU MF PDE SPCF FFT LU
Block Synchronization Word Synchronization Block Synchronization Word Synchronization
Application/Synchronization Application/Synchronization
A) CD-UP Protocol B) DD-UP Protocol

Figure 7: Relative Execution Time of Grouping Schemes compared to Non-Grouping Case

based scheme for the MF application for both protocols and the LU application for the DD-UP
protocols. In the MF application, the data was not as eagerly shared as in the other applications.
Most of the writes were to cache lines in the exclusive state, which did not require updates. In
this case, the extra cycles introduced by the software-based scheme outweighed any performance
gain from the relatively few write groupings. For the LU application, the observed write miss
latency was increased because the delay to issue the writes, introduced by the software-based
scheme, reduced the amount of the miss latency which could be hidden behind useful work. This
resulted in a slightly longer execution time for the DD-UP protocol.

The performance improvement from write grouping is larger for the CD-UP protocol than for
the DD-UP protocol. The write grouping improves the performance of the CD-UP protocol by
reducing both the network traffic and the memory update overhead. The DD-UP protocol does
not update memory on each write and, therefore, only benefits from the reduction in network

traffic.

14

5 Variations in hardware-based grouping

In this section, we examine the performance of the hardware-based write grouping scheme when
the grouping delay is varied and the location of the write grouping buffer is moved to the output

of the cache or the input of the memory/directory.
5.1 Write grouping delay

Table 3 shows the words per write group as the write grouping delay is varied from no delay
to 20 cycles of delay. With no delay, the write grouping scheme is able to group only a small
fraction of the writes. This grouping only occurs when the writes are delayed in the write buffer
because the cache is busy responding to a read or network request.

As the write grouping delay is increased, the grouping scheme captures many more writes. As
noted in section 4.1, a five cycle delay is sufficient to group almost all writes that can be grouped.
The one exception is the 3DFFT application, but as the write grouping delay is increased for
this application, more writes are grouped. A ten cycle delay results in an almost optimal write
grouping efficiency for all applications.

However, increasing the write grouping delay is not without its cost since the increase in delay
also affects the total execution of the applications as shown in figure 8. The figure shows the
relative execution times as the write grouping delay is varied from 0 cycles to 20 cycles. In the
figure, the execution times of the applications improved with increasing delay until the delay was
large enough to group a significant portion of the writes. Increasing the delay beyond this point
only affected the last write of the data block. Intermediate writes are grouped as new writes are
inserted into the write buffer. If these writes are efficiently grouped, then the write rate is faster

than the grouping delay timeouts, and it is only the last write in the group that is delayed by

15

CD-UP-HW DD-UP-HW
Applications [Sync | 0] 5] 10[15] 20| o] 5[] 10] 15] 20
MF Block [4.6 [132 132132 [13.2[[48[13.2]132[13.2]13.2
Word || 4.8 | 14.9 | 14.9 | 14.9 | 14.9 || 5.0 | 14.9 | 14.9 | 14.9 | 14.9
PDE Block [29| 44 45] 45| 45 28] 44 [45] 45| 45
Word || 6.8 79| 8.0| 80| 80|64 79| 80| 8.0 8.0
SPCF Block [12| 1.4 14| 14| 14{[12] 14| 14| 14| 14
Word [12| 1.9 1.9 19| 1.9 12| 1.9 19| 1.9] 1.9
3DFFT Block [12| 1.8] 27 29| 3.0 12| 1.9 27| 29| 3.0
Word || 1.5 | 22| 32| 35| 35| 1.6| 24| 32| 34| 35
LU Block [[3.5] 95 95[95] 9531 95| 95| 95| 95
Word |33] 95| 95| 95| 95|41 95| 95| 95| 95

Table 3: HW Grouping Delay (Cycle) - Words Per Write Group

the full delay timeout period, as described in section 2.2.

Relative Execution Time of Hardware Grouping Scheme

Compared to Non-Grouping Case for CD-UP
10 - B Delay Cycles

n [] 0Cycles

T E 5 Cycles

["#] 10 Cycles

08 _ 15 Cycles
e

E22 20 Cycles

=4
>

Relative Execution Time
S
=
T
)

02

0.0

Hin k.
MF PDE SPCF FFT LU MF PDE SPCF FFT LU

Block Synchronization Word Synchronization

Application/Synchronization

A) CD-UP Protocol

Relative Execution Time of Hardware Grouping Scheme

Compared to Non-Grouping Case for DD-UP

10 - — O Delay Cycles
il - 0 Cycles
i a [] 5 Cycles
n n 8 ¥+ 10 Cycles
08 E [15 Cycles
_ 20 20 Cycles
o ,
E
=06
s
S
g
<
4|
£o04f
=
&
02
0.0 ki

1 L L
MF PDE SPCF FFT LU MF PDE SPCF FFT LU

Block Synchronization Word Synchronization

Application/Synchronization

B) DD-UP Protocol

Figure 8: Relative Execution Time of Grouping Delay for Hardware-Based Grouping

The relative impact of the delay is largest for the block synchronization case. In this case,
the processor must stall until all writes have been performed (all updates performed). The
performance loss depends on the block size and the write completion latency. If the data block is

large, the delay will be small compared to the total write time. But in applications such as SPCF

16

where the block size is small, the delay becomes a noticeable fraction of the total write time. The
effect is clearly illustrated in figure 8 for this application using block synchronization, especially
for the CD-UP protocol. For the DD-UP protocol, the write completion latency is significantly
longer than in the CD-UP protocol, and it increases with the number of caches that are updated
on each write. The write grouping delay is small compared to this write completion latency, and
therefore, the impact of the increased write grouping delay is negligible for the DD-UP protocol.

For word synchronization, the added delay for the last word written has little impact on the
total execution time of the application, as shown in figures 8. When an application used word
synchronization, the consumption time of earlier data words overlapped the latency of subsequent

data updates.

5.2 Location of the grouping buffer

Write grouping could be done at any request buffer in the system. Two other candidates for
write grouping are the request output buffer of the cache (CO) or the request input buffer of the
memory (MI). Both buffers are shaded in figure 6. Table 4 shows the write group sizes when
write grouping is introduced at these buffers. Grouping writes at either of these buffers is not as
efficient as grouping at the write buffer (WB), and increasing the grouping delay beyond 5 cycles
had little impact on the grouping efficiency at these other buffers. The write buffer grouping
efficiency was always the best.

Grouping at these other locations does not work well since other network packets tend to dis-
rupt the flow of writes from the caches to the directory/memory. The grouping scheme works by
attempting to group a new write packet with the last packet inserted into the buffer. The com-

plexity of the buffers could be increased to allow writes to be grouped with any appropriate write

17

CD-UP-HW DD-UP-HW
Applications || Sync || WB ‘ CO ‘ MI || WB ‘ CO ‘ MI
MF Block || 13.2 | 7.0 | 6.6 || 13.2 | 7.1 | 7.0
Word || 14.9 | 6.8 | 6.2 || 14.9 | 7.3 | 7.3
PDE Block || 4.4 | 3.5 | 1.1 441 33| 1.3
Word 791 53 | 1.1 79 1.2]1.2
SPCF Block 141 1.2 (1.2 14 1.2 1.2
Word 1.9 14]1.2 1.9 1.3 1.3
3DFFT Block 1.8 1.8 | 1.1 1.9 1.8 1.1
Word 2222 |1.2 241 23| 1.2
LU Block 95| 82 |1.0 951 7.8 | 1.1
Word 95| 7.5 1.0 95| 23|23

Table 4: Grouping Location - Words Per Write Group

packet currently in the buffer. This might improve grouping, but, as discussed in section 4.1, the
write grouping efficiency at the write buffer is almost optimal. The additional cost of increasing
the buffer complexity would result in no performance gain compared to the inexpensive write

buffer grouping.

6 Conclusions

In this paper, we have explored the performance gains from write grouping in update-based
cache coherent systems. Two types of grouping schemes were discussed: a software-based and a
hardware-based scheme. The software-based scheme required compiler and programmer support,
but the scheme was able to optimally group writes. The hardware-based scheme was shown to
almost achieve this optimal write grouping efficiency if a grouping delay window was introduced,
and the scheme required only a small amount of hardware support and little, if any, software
support.

The write-buffer write grouping improved the performance of the CD-UP protocol the most.

18

The improvements in execution time ranged from 13% to over 50%. The gains came from two
sources. First, the write grouping significantly decreased network traffic resulting from the write
updates. Second, the larger write groups decreased the average memory update latency per word
as the memory access time could be amortized across more data words. The DD-UP protocol
also benefited from write grouping. The improvement in execution time ranged from only a few
percent to over 50%. Since the DD-UP protocol does not update memory, the gain came from a
reduction in write update network traffic.

Increasing the write grouping delay beyond the base 5 cycles had little impact on the efficiency
of the write grouping. The one exception was the 3DFFT application in which a 10 cycle delay
was required to achieve near optimal write grouping efficiency. Also, increasing the delay beyond
5 cycles had a minor affect on the total execution time of the application. Moving the write
grouping to the cache output buffer or the memory input buffer resulted in poor write grouping
and, therefore, little improvement in total execution time compared to the non-grouping case.

Overall, write grouping is essential for improving the performance of update-based cache co-
herent system with a general interconnect, and a write grouping delay window of 5 cycles was
sufficient to achieve efficient write grouping in most applications without adversely affecting

non-grouped writes.

References

[1] William J. Dally and Charles L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEFE Transactions on Computers, C-36(5):547-553, May 1987.

[2] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip. Gibbons, Anoop Gupta, and
John Hennessy. Memory consistency and event ordering in scalable shared-memory multi-

19

8]

processors. In Proceedings of the 17th International Symposium on Computer Architecture,

pages 15-26, 1990.

David B. Glasco, Bruce A. Delagi, and Michael J. Flynn. The impact of cache coherence
protocols on systems using fine-grain data synchronization. Technical Report CSL-TR-94-

611, Computer Systems Laboratory, Stanford University, March 1994.

David B. Glasco, Bruce A. Delagi, and Michael J. Flynn. Update-based cache coherence
protocols for scalable shared-memory multiprocessors. In Proceedings of the Twenty-Seventh

Annual Hawaii International Conference on System Sciences, pages 534-545, January 1994.

Edward Rothberg and Anoop Gupta. A comparative evaluation of nodal and supernodal
parallel sparse matrix factorization: Detailed simulation results. Technical Report CSL-TR-

90-416, Computer Systems Laboratory, Stanford University, February 1990.

Nakul P. Saraiya, Bruce A. Delagi, and Sayuri Nishimura. Simple/care an instrumented
simulator for multiprocessor architectures. Technical Report KSL-90-66, Knowledge Systems

Laboratory, Stanford University, 1990.

Per Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEFE Computer,

23(6):12-24, June 1990.

Manu Thapar. Cache coherence for scalable shared memory multiprocessors. Technical

Report CSL-TR-92-522, Computer Systems Laboratory, Stanford University, May 1992.

20

